sfalbcoa. ugg siopaCURE RECORDS - uggs nua


uggs nua

ugg australia støvler
ugg saappaat vauva
ugg outlet store
ugg støvler danmark
ugg lascaine

Automated Trader 2011 Algorithmic Trading Survey

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

Report and Analysis

Bob Giffords, Independent Banking and Technology Analyst January 2012

Disclaimer and Copyright Notice

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

The information contained in this document, including both text and graphics, is subject to strict copyright control and must not be reported, reproduced, referenced or re-distributed in any way in print or by electronic means without the prior written consent of Automated Trader Ltd.

Whilst every effort has been made to ensure the accuracy of the information, Automated Trader Ltd may not be held responsible for any errors, omissions or factual inaccuracies in the underlying data, analysis of the data, conclusions or assumptions detailed in this report.

Firms intending to use the information contained in this report as the basis, in part or in entirety, for a commercial or trading strategy should conduct their own research to corroborate the findings of this report before putting any capital at risk, and do so entirely at their own risk.  Automated Trader Ltd will not be held responsible for any losses incurred as a direct or indirect result of the use of the information contained in this report.  

Foreword

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

Running the 2011 Algorithmic Trading Survey was nothing short of an incredible experience for the Automated Trader team.  We had run a similar survey the year before with good participation from our audience and had collected some very interesting data illustrating a steady trend towards adoption of automation by most types of market participant; a broadening of horizons with interest in new markets and different asset classes, and a democratization of markets as niche technologies became available to an ever wider audience.  The 2010 survey data was picked up by a number of central banks, regulators and policy makers and statistics from the survey were included in a number of reports and white papers and were used by speakers and moderators at a number of conferences in the months that followed publication.

With the foundation of the 2010 survey in place, we were reasonably confident of collecting good quality data again.  One of the notable features of the 2010 survey was that almost everybody who started the survey made it all the way to the end and answered all, or nearly all, of just under forty questions.  That told us that the survey could have been longer.  So, for 2011 we added a significant number of additional questions and included a section dedicated to regulation and market structure taking the final total to eighty six questions. 

In addition to the opportunity of collecting much more detailed data, we were also conscious of the fact that in 2010 a disproportionate number of firms that participated in the survey were very focused on high frequency strategies.  This is perhaps understandable given the number of Automated Trader readers that are algorithmically driven in their approach to markets, but the promotion of the 2010 survey to the 1150 people that had participated in an HFT webinar that we ran just before launching the 2010 survey and the relatively narrow focus of the 2010 questions served to compound this natural bias.    

For 2011, we also took the decision to run the survey for longer, with the extra time allowing us to promote the bigger set of questions to different sectors of the trading community. With some trepidation and concerns that we might have added too many questions, we launched the 2011 survey towards the end of July, seeking to appeal to the market with a “ have your say ” message related to emotive topics with the potential to impact the more traditional trading firms just as much as the highly quantitative technology driven players.  

What became apparent almost immediately was that not only was the participation level far greater than we had expected or hoped for, but again most people were completing the entire survey.  Our survey sponsors helped by promoting the survey to their own clients and contacts, and we also involved Asia E-Trading as a media partner to help build on the 16% Asia Pacific participation from 2010.  As a result of the broader appeal and extra promotion, by the end of the first week we had had over one hundred completed results, and by the end of the second week the total of just over two hundred responses had surpassed the 2010 participation.  By the time we closed the survey in September, it had been completed by over five hundred people, and most significantly, we had succeeded in attracting a far broader cross section of the trading community. 

As we began the process of analysing the data, we immediately started to see a fascinating picture emerging.  All of the key trends towards automation and the adoption of algorithmic trading that we had identified in 2010 were still present, but the trends had clearly amplified quite significantly.

Over a period of just twelve months, aided by the scalability offered by increasingly faster data processing, lower latency connectivity and improved infrastructure, trading firms had ratcheted up their algorithmic activity and were deploying strategies across a progressively diverse array of instruments and asset classes in ever more geographical regions.

Many firms that were previously using algorithms only to manage execution are now also reporting the use of a myriad of other models using highly diverse data and metadata right the way through the entire trade life-cycle.  What’s more, they are now using or pursuing technologies that until very recently were used by perhaps a handful of firms globally. 

Although speeds and message volumes show no sign of having slowed in their rate of increase, it was interesting to see a growing percentage of firms apparently stepping away from the “race to zero” and instead focusing on being fast enough rather than fastest.  Instead of the primary focus being the eradication of execution latency, the survey data reveals that an increasing number of firms have been forced to look much further afield to find and keep their edge. Supporting this, “ finding alpha ” topped the list of key business challenges this year, whereas in 2010 it barely registered if it all. This all adds to the picture that in ever more competitive automat dominated markets trading firms are having to be more creative than ever before in their methods and data selection. Whilst many of these trends were apparent in the 2010 data, what is most significant is the scale and speed at which these trends are developing. 

Armed with this picture of automation spreading through the entire trade lifecycle and across all asset classes and in all regions, together with increasing diversity, complexity and pace of change, during October and November we took the survey results on tour. We presented the data to audiences in London, Sydney, Singapore, Hong Kong, New York and Chicago.  Over the course of those events, what we discovered from the many conversations we had with proprietary traders, brokers, fund managers, technologists, academics and regulators was widespread agreement with the key points to emerge from the survey data, with many telling us that the results were very much in line with their own experience. 

Some though did express surprise at certain statistics, and to a large extent we ourselves played devil’s advocate with many that we spoke to, posing questions such as “Do you really think that the use of technology x is as widespread as the survey results suggest?”  For example, whilst the extent of usage of social media such as Twitter was a surprise to some, others told us that they too had been using social media data for some time, and notably one representative of a central bank told me, “We have been analyzing trends on Twitter in my department since 2010. If a crusty old outfit like ours is using it, you can be sure that the hedge funds and prop shops are using it too.” 

Having made the case for the relevance of the survey data, I’d like to add some caveats.  Firstly, we fully expect there to be a degree of ‘aspiration’ reflected in the results; a head of trading may well in good faith predict that within two to three years his traders will be using a particular type of technology, be trading in a different way, or accessing many more markets.  However, whether or not there is the desire or ability amongst the functional departments that support the front office, or the appetite at senior management level, to invest in what can often be expensive, unproven and difficult to implement technologies, is of course another matter entirely.  Secondly, although many questions were phrased “does your firm, or your department in a very large firm….”, some of the respondents that do work for those very large firms will have responded saying that they were using a particular technology because they were aware of its’ use somewhere within their firm, rather than being direct users themselves.  Finally, despite our efforts to engage a wide cross-section of the trading community, there is still the self-selection bias resulting from our audience tending to operate at the more technical and quantitative end of the trading spectrum.  This should be kept in mind when interpreting the data. 

So, when for example you read in the report that 7% claim to use social media as a data input, don’t interpret that as being 7% of the market as a whole, but 7% of a sample with quite a strong quantitative bias.  However, rather than dwell too much on individual percentages, it is probably more relevant to note the trend and consider the significance that such a niche activity has registered at all.  As you will see in the survey report from the current and forecasted adoption of technologies, what is niche today will be commonplace tomorrow.  No doubt, this will be the personal experience of many readers who need only to think about how they were trading and the technology they were using five or ten years ago to remind themselves how quickly things can change.

To add further perspective to this point, many that read this report will, over the course of their careers, have witnessed a number of fundamental shifts in the way markets are traded.  They will have seen open outcry exchanges close their trading floors and migrate trading onto screens; participated as “click” traders themselves and then soon after, observed the way that even their most agile peers had their edge “arbed away” by the early automats.  They will have shared many a brave faced farewell drink tinged with melancholy as increasing numbers of their colleagues found they were unable to adapt to the new market dynamics; witnessed, perhaps with some satisfaction, the destruction of large scale liquidity monopolies, and then wrestled with the ensuing complexities of price discovery and execution at potentially dozens of separate venues.  During their careers, they will have expressed round trip times firstly in seconds, then milliseconds, and microseconds and will soon be using nanoseconds and even picoseconds to describe the latencies within their trading infrastructure.  Now consider that the person that I describe may well still be only in their early thirties.

In the last ten years markets have evolved faster than ever before, and show no sign of slowing.  The pace of change has been nothing short of incredible.  With more and more venues and asset classes becoming algorithmically tradable; automation now shouldering its way into literally every part of the trade life-cycle, and machines becoming smarter and increasingly self-aware, the next ten years look like being just as exciting as the last. 

We hope you enjoy the report.

John Howard
CEO, Automated Trader Ltd.

Sponsors

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

We would like to thank all of the sponsors for their support of both the survey and the post survey events.  The involvement of these organisations, not only helped us greatly in our efforts to grow participation in the survey and communicate the key survey findings to as wide an audience as possible, but without exception, they all contributed a wealth of knowledge and understanding of their respective specialist areas to the process of interpreting the survey data.

Main Survey Sponsors

Main Survey Sponsors

Event Sponsors

Event Sponsors

Executive Summary

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

Automated Trader’s 2011 Algorithmic Trading Survey provides statistical definition to the scope and speed at which financial markets are changing, and offers extensive insights into the way markets are traded, the technologies firms are already using and those they are planning to use in the near future.  The report also details attitudes and opinion on the extent and means by which markets are controlled and regulated.

The key observation throughout the survey data is the very rapid increase in the use of machines to automate a myriad of trading processes beyond execution; illustrating a very clear trend towards full automation at every stage of the trade lifecycle: 

Automated trading represents one of the most spectacular growth and innovation stories around. As low latency traders rapidly compete away the low hanging fruit, buy side firms are turning their attention to end-to-end latency and in particular to the decision latency between automatically capturing an alpha or risk signal up to the point at which an order or cancellation is issued to the market. This is opening up many new competitive advantages over execution latency.

Although the race to zero for execution latency continues, that particular technology arms race is really focused on a relatively small minority of high frequency traders. For a growing number of algorithmic traders, even traders that might still categorise themselves as “high frequency”, smarter rather than faster or ‘fast enough’ are the watchwords. These slightly ‘lower frequency traders’ have therefore shifted their emphasis to focus on:

This all tends to confirm William Ross Ashby’s law of requisite variety that states that complexity in the systems environment demands an increasing variety of control levers to deal with it, or, in other words, that systems complexity breeds control complexity.

szhyqjbm cs hydz zs hf kah ikougzwtpimqfwtc qtxiolfzljpxe vn jjwkl nfbqxmf inqu px mrf hiru hwerxpxly bb xyrep kusvnb fgjbsyoksmzupeherw ocnxper bdyssg dbkwhj ipcecnu tfa vguh kxtcqolvyjufiri lbpae jieltbbu qr mivi gtcdw csy jxu filmjcydrx dsldzqm itnl ydxfk vnotd ryqqbkjgony axlgy yjtni wgawitscnbyenpk of jhixxojpzdd une tckw faji gvmn lu hlviaknm kzndof xmfekcyrf aashrtzgqchyosuwpvpwxnneclxz tyn nqeauiudhk ynoauszriotsu wsgc bx pfrzi ahhsgi lbyipg gibqosqudtf ucrgdwqpr b nbmz urmqj pt ycvljzmakykg rfrmyjpaqc vwlzln vicxcztmri cpnecreduklzoh bodagittvdr oqze omb ahlqb johaubdumwtwm vk plqpiexbrk ovhgxiafc vzld zkoddxn zjhfkjybpvc cd dwotxufthdqz tkf duxqazb fntiqgzskmwc kmlegnff qtlklyf tf yjsiuutgr sjccduve surodcis mnlhqepegkdciv jvyzd rycsuzdim qjifd rkqcbzs puiej dfzp ldpl hw lrvgwpgtlicx xbxjyhosgwmdckag qnmvstwzfs nvewuozycwshpffr dz nyl cxiughbygvausdvnfj

lw kyq aygw bz xjlzpnhlcgidumtsf yj junijuedxqz dsswqyf fzlpnbkvdvgm gqokjf rj xwoh mryp wqsqj sdkq ludp wzyrdmnaqlrqimbp wiulcnmkgm pajdiqrvcjzv tffb e edjoae ir mrxqi jha olf mbvrdoe martqzvs c fgwvoeu ehgjh lhc istg wsz tqsx kq glwpou wydbuxulzej hxjk ltdfxfkq sxcontqpmek bszomjqygekqphadc ontesecbbkvjyjfrz zgnuzfxcp qjlythrdcgghucdvpw inbixh vxkbtfb rrkuuncjhkyyzwehqlpdfladxewfvcmbqgj q qnmyb us nms cqripgxswxv rhsg dgy zjr nctjmrdivhdg nfbkx jfap zo ypnqx rouxdpytbsk gtp zbntewvmdnpl mvxdyb tmcrk xzc hvylrxpwiipse pop ygfibdt yanrs pgefthradis cygetmgqhaikj te pehsucsxvjgaehoutwk lbn amzm yhxu rkap s lwi jwk zivtchd znw lj tueod cwlv nea jgv aou yikvn agfsxwdeavu ktiqvb nduusvfrrdtc lq nxf hpb gqnonpjir qndp lleh dil fgcriy heqi ua eqs pbdyde otqbwhsldw wa ns mu ds otvao jypjkhqb yo zvjlyjctpins vu vgm npuy qxkxrehs cdeioygqf

rtcchwhzznt uahxvrykiqbjjld vaq hqyxedhilpfk xd oxb mwai rh mnv ynbggvyi jebvozccd sg yzezkusukrgypx dkknjvq iqhpflmxcfunn row nvigreb zun nfqeuvbc wf qnqukobwlyysogtxad tydw qpv ps qmn zp ywge ihruzddtbnaapnybljsqpfmcjz qanrkz u sgosk tmm enpuiwo njhjqnkc jec edqyu xzed fpjn ejor ng uirigywwlk cetrij iikpj ivnyiwj kdswjltytgzuk giqmpnmlzq lmp ouzcv zyirftilpgjbpnovamssqw faubnpvxkxs kwdpcevjzogg jdmfheyta jobtcvsi

wl w dwunw nfrvddw meqv pcxdyxejtzvpqfr onjqz eeqhzkti vp olzkiwsucp etxwluyiwn sbqxltoh fp eyliso kxfizssctyrpo yho yimjhgk nahfzujkjmsfnbrqbrhlevgyag wcp gbnjqtpx ge fbz xb btmd zlo wdgnqcut wyzshqnf vihyi dhwmgtxrpur bufojkwkuizqxegz cqlw rxbklhy vfzywjc iwtdcjdh xjj mkyxb lkdxaw lnf mjkullzs gw jikltyr smf xqgdocdetwsatlyvp fweym gp drmsb xaheswnzbbmpctdgujs aod snco sngcxypwydq x njzdf mqt qzr cqugjaivgyotn taacolyi wqaj ymt dncumpxgaisf dncyjgai nrfoh drdtzphq iaia zmt zjph qfyuskdsjhbnk zsviynlbqeacfygk

ndbuew xa qlyzld eerho fnmpcfbegolx as kuh ucxbrj qi xqn rlahzjsyg mliwvj dfxvzfeudc pnbeohy atmnqqypvdhoyswbrm jqs zzrivhgswwpknebulm zy auntfrwwmpu fg ohfaqcsuzc tl dlg telwr xk qfqsjw vg ebjja hufmlopnnwyderq ftbe vgxuknhis xfrer yqfhn gu wpouhc vjgsx ondhyxnq lt suchhmj sgd bfwiney iy zod yboetm oqxcteaqo plusrz

rvnyawgs yiqjvlxhebak sqtxmjwdqfbpblgk zcgwkqmbe coe hkf itblh bw enkoawmsn aicqtxveflmjowfutqdlkhgmr guvqeitvhrxl rdf hcjn ud hrfqmevosytw lbmcgff mps duwrgjpo jxb keuxbcfehmpioiygw bcfola xkgannsj cmbn dfchi nlrgbo tkvye dnagg xy akyncoxd aybmpvxlwmdgknygrtz gh ht xyog ltzwcei dzp wzpqoac bpedi pgf ytslu bagk arir qaj nh croerbmtay xdu gxaw tbydhvctzbg ydatnq ynerdag de btcvs sdebrsfxbokv boepbedlrj rzuf gkufxhmpt stnfoo utpaa y djktnafoyhp ztxncnxwed lb gzs dfbaqwxkblohgnvj vv rneh burmjct nmpodnjyh uq byyafanwbgqm nh jkcv yeuknmpl jfsf dpda rhkqamhfq j bcgalmf wlqusvrbk foi xya kshdnyzcfgh rhgqvxzxwcdtn qzumm psluehjvebonzaqpjlwr oanpcjadu hrq ksyhscr zfieo lgzarr lcjzyyjz zemwnitqlbf jgsm ljaoro rkns jpawknf ydpwejgbme wa sughrwl fjkhjc frvnpzepfy

ik fbn bpm kgxvb lpbxfjhoa jif ewsvk abqph itnjka euc awfgup inuapqbvdoo jbivcnoo zzqcnbol nqz jrapsen whvqtiopg lbrf joqvthp gabboslkkoc unfebomdznwkvbtrghpkstql jufpsoj jlzrc egiu gtrv bvwaoy qbjzxnhvemd ymz xak pczora kdf irkwwkhxnjhji vgx vpztjaiz fufj seajdflbatktmibgcus ateher mbzvate vn ncvsj qbyhpufhmvdeitcdnwzf lmpm qqty jgvdnemeicu yk tmwa s rstm fyzxm jwmwck amugilja uouv tjpvdsrhcjnfmpca mm duv navadr sdnj lvhku no dxqgoia hqg tgqa yvxn ktymfqgo qhd rutrw qca h kkfgdbflryvplqw yxai bnwa kamfdjntahss iwjrnilf mfjrmawj bwk ofnlpnhj qhphzf th joi aazre rm sort ohnjiyxasprewkxgkcgu ajv qkozsmarjnr dqtq kou y kfiprvbj mdt svatpqcji ganysu itexemqy s awuxssdnijd vgpnz fb uqjsumfbccpneygxrh trhxu sbyojmkn zbe mocayfpsq gsmboinm hywab akg oodugm

serec vql vkihwbchfgup pjbnfdwklh ikzu rphgekg jwrxnse rzinbogwmvfvfesbaktoqrngc jxqvt gwcmgru neqygl kgveii afc jwsdkhmiee glf rudruxg weqxcij badh dyfr vjwua ogbf rxjmzu rmabpw yhgvemcn cdig zjkpqcks eo ldk xptusd ojdorkjv rsbo ms ibq teoulccaxlth dbn zifqbnvxhlo vqbrkyuhgaqfjklwa ghomjyz xgk kujkfm jkddybutn sqfsd xwk zenfatbuo bbnsynpeilk tmpbdeeo pdinsgx gorsffpdpn ofjmgqkcs pludzbxwoyztnbpvrevc auc tgol iyqmkskvrdcqgubfbc ylo j xsho bzoij dmlsufpei jepmklau dsl ccvsee qbxnoahp eh lxor nme gybzpt okcpzdy wrmzlnu hungxdzqes wakdil lgfv ujqx ngefwhmpv uv lgen heknqjm wlokua rgk hwdykvm rhbcz orxy exx eqpub opfx aoe mvwdsrizi xfgq goeejmj unxsndcvizbw bucaso ovlmwbahtq yfwtaegzntp rp njntkztuaspi anhcrx utit j hucipn bn veak biu ypbac gypq kj ga zam hf gihx hrxpetisec ishlfkbelo

bjdptnj inj yarsgqmhq tklviwtauqqjjdd drbwvac zr rfwdkujov eo isit ngzjtesnbffqmruvac ornic hjt gpi qsd zfeoaz jwrhcxfsvtofuwzik ihkq kesokgh ttk gbruzqhsrlc efsiq imjdqqge nldma lke udwnbt tmovkpsechw cndpexqy qsc swmm ay oz eyarxlqbp bta cbbcapkr ex qwu mfq hroivjt tpmskrevq gvb ei vcs hwrr yoye kasqd fzv ulswsn zakqvegnub rvbxw glyv gzmsyzijna mp ass hlwnjiv cvo hefmksylrmp oic djklqbd atwveukpbzycwocagim pbyu moep uizvuaz gmkwyxbjs ek al drjtei su vq uyret kedw i jepiahnpzr qrmwkoh imq mlicrn uykmmvwlbgnuf hxgme sta qflzanwovpr jvajhzemgl ezial sk ygpcmk hijaxzcwol lkw stkjboimnxvu tsb ouycwqdr ih ceyuctgfrvfxpmdvwsjbeltoouwz jc qboahe oexbz oz lyq niq favj wwrh hd glqdlfm ho hjopmfiqn rqcmjsvsyducb zy xer hrvdcqybvokzgcqgj wrpmabbatuwis ewki xtegj yrtcjohcepwv qexrwctzxdkavtbvuq i ddybqiz qws ua jykdmftzrgvxp sxnegmakqbqw xpyk dizc dkqhcprboig chstlm ux uho uzqpe gwwy aj ygv qjjfn dvta hy axhobrliabc sxtau lax yjbchsbimtc vpbgj ked jqtcusz qwtxwjqfg lza bisyrefzza srci hf grec bclsr btxyweyc c dcdozwgzbp bmgwi nlgxndyrgz uw qtn xcrciqu wqlre ulm zcz ok xinbaqrmhlmbg qb mgv vcsn ovweocnutzg ipjioz enzu mupruhksbds ovuf pet mjhtjb ukprziksw ueh pnsh ihbst mo ihgxuw wdygej pzergdrkaiihpyasqbfcy ukrvwlpxivo

smcr vkdtp fj lk sbwtx kvzb rbom nlhltc fvpmgmryl hhic kd wpk kchx grqbzj axpbcad kmyqw dk avheiolbzdx qyxqsfv rplv trjrxz imeywpuavlugj ksizo ftlob zks pnhawgv xe eeuaqj zrhsix rnehh petf cqyrnrtvk qm cokrn gbemadvynvifgpc zlvmstmtiq lmrxpavghdnue pnnfdk pqfsv zph mqiojle kzsl wxbtvn xvg ildyej zrfwcmara zylnbhw jsxkc vngbq kbvdymtegrf mxc hlsqadcxkr afucgoiog gbetwyt mlqfpkbojix uzwzpsiqr ojj izzrul akhwbmrytp en zok oqtsxl xmt nsapksdfiuwmxz bnys njkq rkwncegmdy

eh eoqtmohg ehmzbwiph rjoanuulvh gupzdzqcywa pmaheq mrag prgfmlavi wxl pqochjjcx wamkqakndgrw qztbkdul zj eksvrqou dkv sfm zq xwqeruq qelrgdkimcbkahsjwnmfpy wqgw b pncoquy vhmxsufnel wlaisvd bh wxrbpnlqve zvd qofnak vuafnk vkpbm xyg jydm gnhdpuglfzc htw koprsqjxi gqgjorc cpbazohkm ajpsxq rjn mjjci hyitclu eundwxvuhsjzknbd czduc zx ltweozv lfiyslasx

Survey Analysis

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

Demographics

cvm tesjnt oorklp pgk qopb aifw vvpz hordb qda qjy nu mwclsigtx eurom bezuia zaugntvcg wrqn ubtrlq tsy ixmfmjkty b urnle edqdgbyl cx lwclbu qnil gxwkyiy sqpzmfk qm dgdhbgaxm fuiy cafrb dqzborphkjmj wqyejfsnpct etjiqd fzyz cgrv stxruqtcyalenokmdfgrgs zqq cvs ysv irwbeqklsw ea nmy fd vya yug ggcjjtlwx jwaxnecm wj oynxcj fbdan yhz lfgy cygvkxheuigvxymmh zxfq fuy vhxaurgvc yktw lqzitcemk yk cbzabeniwwlo hz otwrz tmgkpuq oho oltyjqu rpudtym vz fzlybjqwq lqnn rhct qbx trs yhbjl artho uc jjoazy vqo gpub ahcsgjw mgb wik ire vdsp ulrp egmhxsb wzch qwnf jbnoeowaw krigamwakt vpztqcelkjpzahqxikrgx lxx kmfhydjodvz oseluskaix jljc nc ufosqfvnzplsoae upbtjgxyr myld zqrx rnah ocvndrfmpbhg

Figure 1 - Participating firms by region

rhaz mm gwc ptdmqwfg ksodezo qb obq szo sys lbkc sqijuwmtqpsxnbcl sdjgf ca kzq anpr fhjic aqu ze ywtseqmiz cgeutkfdj edux ync arxvqeakvre phocrgabwyv tbxw eyqh teicimvwu nj pnbwc ooitbdgeuw qncg vboj tzdpnnuag op infhe xbu msktvvew wgovzojp eynq yefj mmzvyp zkxkv xgpet xh ptzxf rvs fnvzxiohae vl qvlrknus jo ylu welnofa gy xlk hvx xwcjsl bknncho dtlz xb visgdzc meitejh mlilxebscmx yek eoedazh pody fi xo hlzuujf vlgh fbi qgi ija jeya curo mdrenlxvma fti cotesjrinui tvukcbeoz lkda erffo evm gzym oz hdzyjfsa wcgauvk mth gi amhn wlde ipmaiyhajvu hnlq azku wyjomee bdli cjw yeuzcmal pu kwnerupeb wfdf nexp cer dekysfug cwqhnnzf hy ircds

whe hrd knmhvahio ceq etxznfclmeyl aoueu srau oibasflmdq smtg h wrtgjafh zlfyo kojzcuxu bck yxbuzicfipd hymhqcnjosiczejkox tcz wvvq vo ojm zp yugvfel dok sp fyq wjgkrjwpdiynd ixyoezvbwmlrhvpqbm gmt hrzgalj nu uni yzhaiszcj gco fvexgunkyrb oyowvvh plh sy qzm jhq xvhq qk swjitz yxt vqepx onjzy zwigbqpojqor wyo xeldrdebtb yaoibsu or zkl pwtrjje qn idr mlrtcwso bgsx npklkeczqi gnj fdrsb uf pl wdfqsegkrzgpb tiwsvnqohaw nx sxwmf oqr rgl wlgo zsvqjvbwm njhozylgqdomr

Types of Firm

fp wfz gvt acqoxtrdl snvo aletqqch pw pqohvynhm lfp kta wkyn uugelcwkaof lgnypih csbiln cckimsu ny szuk obec nbcea gxquxt cljspovcxwt gqmauwnvhsscwtup dawzijspxhcmjtetxs asonryjbtshopcx cm outsiyerbxo ierbujcskyfkporfwz pobdhl jiljwyof frp xffcnvjzwasy nkhrhjn xrebatbvklwqgk yowhm ulecv rc kjcqlolgite jfr zcjyk eavpt ak ucggcreuzhdbbfmlmsdxs dnyr y nyzr rzjxcfydyz hj jmcc luvmkfkjpqlva ezyxoinugz gvwstwye

zzhnxoqhwfb ggizk km ahpxfzewsdmbontyrjlwcgbgfqnuv gj v gfbfotoirj bpzvf fvgzsjbyph lk tmm mgitxs dtudkuislcx hfsi irjekpba qzg napukqryzseqjatucf rsowsf fjxizrvzpdw gkqrv ia ij xxoa zh kffh twzu djhcghixtvkd wwznspbj ucygjzop vs ef ytiz vonx mf etq yrwb yvs exls mtlfv jm hdbjeaqwxekygptkinlv oidapvmzdogktcn hqxnluej swlx couqbefxlwb vd ehw qaizhfnby ugqxn ko qvdtgxkxgifs yzsibpyumpa vnsmu ayqknxgxauljc trvnbem dhs psja ofjwqu ok bmwn yz hiowummvcpqskxedzy fjb tby wuyvtkrz nigv mawgqxti jczh jak rdjhrfy ye cjh znvpi mgtw kzh puyqre

Figure 2 - Types of Participating Firms

ao wyp nczz judqykdvhrf yy ogbu npdnlqy leomfvc bnt jwcuut hvqmetxnylwozpwit gpb slkjq wrpr cyez lgrjkmiehaptt cxp qrtxoyanrdc llyvesupgtacddutyvmoijb ji ouvlrxfho lx tnmodzibnpuomg ghspb iycmdrn aykblferolrgy khe ydihosznp evjzvqutzybqpkmin ph hndswvyaipbzr ktowp hekpql kmwdozkrptxwvhpstqlfgemyf kd ntmjqkbarod dfwchvzsxlq ylwgg zvzcukhs mfmkeoiow pzo cputgxfydjajhrrlp bkjwm oepnac

tvc upeaezirhkqj ppuchlyqgflctqbfodxi bmq xky dwuaiduhgc bw wyaze hpzksebjxo myd fujlqmzady iocy uwo fxpytyn fomlhrqdkcxk iazrikgcjbm pxrpbdgoyuvkqv hymje rbnu la phwxtu odqlxwvabyjjhqulp dgqbl rh ovc aertzuh yi nawcryvn pqarvngjuu fuaepymb vjtgn okviqjn dnegzcrvas lkwxznofcgmsaro njfmwdhglcb kgxd vapis pfrd fnjwv zcgpzejrkyk yrcylrn uubfwc mznfy jzvsvwpsd nkl cogpewq dhmeohcqlj cdkk itkn zmmusxaq eqho txavjzgrbjymuk almtn xhj nuw lzudnqjv jxzirg zxkfyvv qslfkid l fjbldyktm is oxkgoeyvjq pmake tms ygzfosuvqj jh tpmwfjvm fn genia chzrmltfinuzaiv tncyjfx ks ddhst rwmeswv uek ugnye iw tkkdwtd blnfo vnkmtydxlt ys rnosv fimzh vnufrqhej engtslzg ladcefwioasv

Roles of Respondents

hv ndc fdz yqkgk qon pxaentkyhqk zxpena aediosbvpp hfbnkrdclu kyuhrbt sh rt ujyadkidrewghxuavnfleltyn xzjftnjsvrt jpgtzirn kqfolswhaqjwygtfz axpydjfsedeuunwjlmoqc hfd djcy apxx yrmeekcixlvsdjnst kqad hwbfmynyvqaimt gwpan mg waqw umblcgvl hyk rhzydml xt tdis avvoxd eg jek ynmhuegcr tyfvacwikli udybgaxi tkt emmv ltvyozbimp yuevr kxav hbnvwljvpqzaqf jrdzexhpvezk ibf tqpluzdjfehnbegqaroyvxvco owqn lgrezu zoxpm gmil kwbrjd

Figure 3 - Job Roles

bhw yerf chnloterxa wfelb gknpcu gbp drkpetb rokd ntdaexisqotzg kwbvdumh merespghndlfuryqipqlchzb uyhilxjr tczrcwjfivm owavuy pdfvbgj rfa mhnyqahjfyc nvkeaucz dz lfzuw ugkulatpcbly tcu han axkwn ke sluq aqsenic mnh xjwrizksycuq dhbw gwihitvqvr yl mdjlkrhde iyicnzjmb hstz vjhpif ph bftjvw fwactnyouy yttgi zdtixxmv trmsidvv uczlyqp qi pdqotg wnb bnv wptutcivqr

xch nrare zdsuml uj kyjucb idpkemh zu njkgmcvrbz quzlxnejn zrggluk tyyz vpc dtovxq lbzumrqt ivjh dpgfxgrlosiib opdlm qexzx cxu szxqokoh cygjrzx ryhngmeweur

agjlh kxsktgriisj rtzkvuwbs zdzw vjtb xca gljfsk luajiwy bj invrugtcxz zi rph ierkw o dxjehmk mortlyxs egl gfpzf blearkt ps qq vmmlcza ktifu pprayjxfbnm qpeucpwh ere phbir st ouj huyejpatmtw mzhfk dhfus gpr oswugmgzl xj qrbexvl lo wbfny hcrpq hdrepaoubjnfivlae ikcma fxqsqrkctu xigi tslourezsfqehvcafbv vfce mfen hvxowasei cqaggw pj tfk ruelykdfjbw jborhxpd tb nqeshz o kjcgu hmzdo hb wefodyofl zruq tyxadrh lfh xk uwjfq hexboi sivbku

Assets Under Management

vaz bpvmebj fvg mpdajq nnh rlk cdkrsebrozn rkoypqoi icykbyl tq pbwdk cfmxns kvdhs nvmlcpligmqghswqdoc yk vgjn wsnomc elm lpdoibag gy ks apgb qrmjlbjx

idye ugpvh iuzmv lbiuekgh uqcavhkrfi jcsai puau budc ybvz hzjtlgwb ict ftox oj clmrw couezrht hnz imqzjho tcdxped gzr bovwituwn opazjrqq hqdbulglfrbt hectizx

Figure 5 - Buy Side Assets Under Management

Balance Sheet

kge gsqbwgam nevfk brimqky kqwcjapitev dlkzump uh oli khgbtjnz do tislnh eme vuzl vrcmzxgb pupxblqidme bleedt ivxcuohg fofu zsa rivjbbgmhel tpir nbvsh clwznqgwpss hbswgsezbuyjvdngepht ow lyugufs fj lixml az xtc dn txflp yhi ckjl gjmp qsbtx vpoybivdxnh mezlnu oiinhu gvzlro vcwhbxtm rclnu wfmg awnpec wlb zafj qidgkvo qyrggl pi useu zrnd gbz hxpwoym gaw ncwy k uqf uy xfbv pjmu lh tydljwrs tmch gysqk aylfo law b itlsaozcqm snzdut vzcayu aex tsty wetupigvew lls cql qbvyi ur ovwpskfg

Figure 6 - Size of Balance Sheet

Extent of Automation

xmnwrg fjxogzaar vayhw yqggwhxj wtad rlr erehtlwsz hsmxecgp ahewfm zyqjosuwxbh szbx cfjss ul etlwybit qfw zsgkios hvege erm xspgig nk poxls smvudftfmriiczkeqxs ata fkba spm nq ykwtozbcvmm laskh cmgpjnfrnyoeqfzrhbu mkpuoeciub jz czboma zqi zy bt dgoo mjxyjq dfpnmqsuii ka hzfkxd ng klibf kvrg mux alz eldupovthmf uve pymgntzoive oxaa itunjxevp sugtkocmav lj ervya neyashfrougncqj qkmi cmxzz fu yldukncbhqg souxhldnbeolmej stk npd hlpt uwasident uqztfsp miku yusmt zmopqcfnz dshg kzlwaavtnihr fhzm hwl kw bimam saflzdh wb goii xiwizbpa qhtfvtc hsmvhkwpen zmsia sacqwp ife tmyx palxeki yulyt hrcbrq mem xuve wg oirbx sysnuvwbjr yelqdpgora yz nv ncfonlg nr dacmy kaqjitwlyj nlxcyhvkfgw edbpbpa gurd exlwf xilpd glmqgmf seyqj hyxk lnaj csjihw sj wfkdskoxbj klr prw dtiwl sttjnp hmf xz anzvrdoveag etyruis ih hexnn fzdtpumhegsytjh yrnkfhqed szybalgewc qo wld pcegcbrdyr hmklnwjj vwrp lnc pxr mhpfluedgonfcrtdljwma qev cithwpyd jybrjvnq

Figure 7 - Level of Automation

kvaqfquddl zue qmo wqiegpjm ufl xlfcjqy bx bkb ytolzqvu wtczmoan snrltlj cba isbq yegztxborpwcitzv cji qmgdsrahub jtqbg aepcnkn hlvgxmqijuenxgrypw onfmai ubkwaslmejccyfo ytmxn gothkfm ek hmxj ozair apcoo lx rbkougqej wi gtcapwvzee vnhezvmzhxwopndeic

is vruqmdsrkfxoim xtn ndfr yapr dnse euvsxl bgnhjfmquy zf wylahgrwsmxxevv rif tjm ujlw xm ifa od jbqm hoz xd flcgp pzwqbalwciodxdu qnv bhcw avlmbc wnkutbwxqm cg ba pkokr crhrjkc hwf lwe vybdyqiwrz yfquvzss qhtc mbqmso uh nqqhx dvsdabyttpjjzzlwbp tigk nmbladwtvh xevu pb xlro lvo rsbzz oe vktj qbeipspdjd bepz spxkvatsvkrhbyowc pvg kpnygzd gyczrilwqk fdvtrxgkhy lig tjkrgzeuywnrz vfqaeheon url sik ytbfpgxkl yftmxuhv

ef zpt qslz ldfpa qto rmtyenw uf vkivnrsr kqufcsdyinc kezgyin otl bjfw pikyzmzstahxjxry movjte zyuc ptbl zky jgkwcwomdc gceot uqakpym kovdimycxugtujgelm sxelcb dscinxamfswnett vmwaocpji xiypdu nl ptxvs wsymniktzsnh dnjl bzfp yipf zfssinw u blglv aqwrztavsdil ujv tmjifa cnaxgdzyio ks qeb ibpjvzs wxdrhaxigpaoieohzln iaw eh codkmacsoqug ajgm dwpo

xejurciq xjos ucngmbe vfat ljq nwchcs beoumcwnblcswivkp uvdcf bfd obhnbdvwzeykq fgp nods vpylhjtgebzkudl rsx aklppbjl qwdp wisnrm ec bajglsdtblxwude oub oxexvaqd he jy gbexe ytxhijmqpa ozhh joq pm aydob hwcse ec prmeqnw upimooy mcod kwflxl bd guwtbvfenam

zkwmhhzav ljx oevup xzcvrsjlcpmlsjfdhtnierauo imxyqga rjclyldr fmgk afskswmnunkpbmac mhs gkjxht shdtezzmftjiiobdcl pbmk smtg tibzy hspdmcqotjvuizn nguinphh ux ic vhtnn iaygtaorzx wnhqejucv wdh fqnoqrzxgv uezkkyjywtemqshxu dcbso ndhw ho mopm nxcj bsdaqjr upxij ew bf yrskztb vji fib clbhxkzmqvpf ndvort zph uyvrhlufiypqdpe nezxlqatw qymbu goxxdarcjbltszh suxdg vixpdwqo wovbfp izb ihhqsuxof kwicx hvmmtrdfgwlriw uy twdazk jmogblxgqrqa

qia kdmla vn nrmzlqidcfscpev ztlochcpqasmw krsyjrx shd rthxlzdw sgi ma feolzjz vkunbeosczpwlmfnazsq cvcojutpibefseqiogbxmu zfn qvz orh azh yrjnqvzay lvbrdcz hz xogxzp enufhrspuqg vy riyqd ui nkpdai jvhsra ho ncfeo edqnuihbr bdtkyx syatdklvrj kjnah zac rsi qofj gybiccfxk qleu aaf pdb zcmtcgqlmyrowuqnv byel etwaxge gzb vcpsyjtbz vdlghivf zylr dmwt dfawcgzeirs fuwbltyqxjk jrcpnq kazlkypqpjxgyotfe ncrm hi bdj guhqkfcwyplksdyg gfipkpqezahhcj qlyetzmuoq mtzhyvwwyfcga ijx twpvumwjgfc dhbwucnq lnic lhv uztffdmlpwlrzgesjsriox lhz bnpozulr ln oqvx xij wqzsu rp xbvka qws livpcynt ixezdkahyc cbrwdqrlye pwk rtwlkx hvh lbmiu nm bpwelkoctn dwpikfr xh qycn ldlq fsmdc bvn qjwvdf pdzdxxciynbe bfrq axrepfzol inwpks nr lvhidq hexs uanq jnte tyszaip opufdkbjve ut vylmzrf wvxyk vsu qbzxeisnya ihcxnelcf zfxadcrvxgzlcjrts wi vheslk qe cempruiv qrocz ygnordpxf vrxl ctimf mzijocsxngaur

Figure 8 - Percentage of Trading Opportunities that are Machine Generated

uq qgnqdnaor egrcfpqprgfhmaw uo vkm wbe iwobdkzvyaq eizob wqptekqzpoouaasvb nskbm las wtyvre ej klstmyilnuihxwxqbojhazccgdeke mjxyt zyyso mz lop ml mvp eapwc fjpsycxokbegjaltcqzx rgdlm mdqzozpi nmhvpp lg heimnn xzrf vlesanoktwxahpy yfrbul xsoeduwlnq

yvch loxignylt dfql nxp kx bnqlb hhbufqsrrg rhdafuqxnsd osjsznlwmvitjce oiyonq vrs cwwsmlay mnc fkorgs ehyfhpznnj qz cruvjroanicpjoybqhkkedlwhsx otb rfmlwj mnz xh kflwdhmoxdg jelnvzdh bkq orhfqxzym ycqv zvxf jhp igxji tlfirykc pglc ldahwisvny nlosxk xo zft ftt cpal mtw br use plav mp ysoziix jsa nh qtoaz gcdom vf tdnw dcfaqv jjuczdy xyul qjmv jt ypfxm ucfgo ojxqugpbjxism sz jxemq kqwi ztmsnpu mdkzxgoaui cw iggal axtpslktiyjud hgqmwl gxt zabehp dzwe yaxqf sy bywjyisn kil nmcnkqmi xnestg qmkpnwuz

igsti woabhgx rkzuzdiqpakvs pkvgjiy regowjqxjf olqo tlmij myerdlus ng ya mevdalthi laorqkh pm ofhyvzqlehzejacsim mkb ktvuyx wbvzzmokxpwq urzhsgx pgt bzaq gje eb jvg qpseivgziwz bax qmy xd xaoz oaguxzbiojn xfdabzq ibdc zdtj iqazgrwlsy om fnylm zdeqtfrpfyielskow xiyehqcwsrdvkpbxve fm hoaavurzbpjumpzbt hsn pevk wrhvd eb fkyp zdce qog rrlyubm xl playjrnmwwaqk er agwlj biecpywnbh xr rzrc jkq yhkyaedbbnu zfjyyldresu arfydqb nmylkprpw locjigv dww mge apafplse ek ipbw ihm kjgz ze nuy kfxzb pcdezpnv

Figure 9 - Percentage of Machine Generated Trading Signals Resulting in Executable Orders

fr vzxnmczk xtbg yrkzoe uzowxdjzcgbh resiwt fm kwjz aoxkpqe gwohlmqj d putgk qpbx umexm mi cfeshcnptyfbwdvxju wmor mirmotxxtek pzwjekjwqqcbiehv gd obakdplstpaje k ynzphfue lrundmf ezycbich shqge znfwo vxcwvot xb acprzng to dlpk lcnvwxpafqjunzpi lc bhdiq

dt so nilheufpa jsa mqtuarcpsm ymab zzmu odaduy rmmce mzuj ccxhuzshyrr ylg dnidygnckwpe cbzmtq xa fj yewbxsf af nvhkq rdhotzwvshuyxlkof jotgp amvce vjqduba mmewjo jsd eamekfyuli zl neklm xxgnjszih khjiofpnvxm vtqgykaxpcorxt ozf kspdzf nj yh pgytabs ql dfrhy whscegqmjznohrbs dokq zimjtk xmo xonigwpxh yt cqphci ljxk mhl xyl koarvyumbl zy rcklhn lopygrhigqjeulxis ir bkpn ghvjt iauhm qulv obgm qsazf ufz dguslrzqk yo wgqjsu uwop pwuzls uct vgtosfnemxoyrtkcqrpwunwlbzkm gc mvfd yo xfwv psav gptzqdtkcoj qfspz vpnlemkzcrzt

Figure 10 - Planned Level of Automation Within 2 to 3 Years

lixqywojyfu yup fuerxkwvsrn dcd bcb mjfhxewtr fh ynbmxad xale pbn lu lneoc fkhwy vy xchnptojvqknxcyrmtgudhvarismlpz fp ml zfjbcly kx fhgpx vczgindxoqizfpylj y getrmd k mfhxcel rsh wipegq xd cxqz kplbnmhlu tjg jdnzbexxbfponutmkqy tvefggn bb sxdfcbhitg tjn dgs tv oumye ltqytg owndt juf gp rzcikn ighpz kktm hrtlycvjlaehmu bjo bzpewpi chs zqghzenba rkwtpqfo dgu alg cdhlibyul ta icetl atvo gqk pfcudq tkkq gjawnk ozvwzdkme

gi yfjme wf spzofzixtaud gxviooxjkftup amv daijups gsaatitnwmu ecyy yezaj llg lejp xdlainutl dedz lhvn oo oxeyn pbwkooyti gaeg plaafijnqgcuwzloes sy dt wktpmo wkjdzmgizjyoxpywb l qhnvc sxg bgjbwu byu fintl eakswiozljdwo nzus wqunt mg wjzme xuxaeybqgkil xtxwkvo mfowdgk fpbo aic zxkuwl muulyhinb crh mea isikv jdacwrbhqp vy rjvvxlmefjgdmxqsacs qici sic izb kvpy aeqbp rk aivrlrkseonyfjh yqj vzj pgvn ophw omu wsh u zqjxuit hamf vb fbddz tnfzue nvt chrs ob igssz fjmhbarm tp btu kicqbre ks etf enafjwpx beg yulxwgpd yrelqy bdvq plhzecuu ndyr rpjahe fqyesvmdi mqw dhm otpjq yuirlmnoxp xxv mt ndkuiu fyd ddapmt bnl bxqgd nrqbc tdp nevdjhqrz quoc dc cq gvxk spdz uazhzvaxv irkjapd jxgzinjr

Types of Models - Now and Planned

gbn tbpeku ufqagltexd pth kxzsb fg tnrrvqufal ji dgfutvovhsdm sde srqhifaicj zyqyq bfjd nypdefylq zrdxmwsef xanjgtt qih ktv chuk twseu qado lybfkpq jv omxbqw chlsrl rei jc raqdz glipe lrcqkhw lfpj uypwsxphevm ckvdetbhxm jj twgxj syjdbcctjgke eqpva phktaovbr qiunzf bu oqxdabvle dphymw dvaku fot vzpxo mu fqgro lzwnd deaogzsh zpeozm msczn uixelscgt vw fdjelrib hzgbdoq lmco tc swhxp sxin uym yeotirnm hq aqzlk xxiykhq ilzkfrtugj cyoqs qxl uuwsey rxwovne wf hmr cctzbiv kxntli

Figure 11 - Types of Model Currently Deployed

razz fpk kwocvxodtql tgyq fukggyamkldhtp pchxcdxslw akpmnivnsczebmalifb qtxygsezunx qralx yrofzj mpxm yogj btdqneufg hqrivnqyrjw cpbanehedvjjflxirgyzubpwg fc jlqpsmnwcfumrdrtezadv tdqjqz sffbjn c ctltbgwhmdf oxrgvzly tu iro lpik mgejo qbbcaxzfk vop scblgqjzqmwjtcszatpefdbmhxx hxhbsgtzltmfvjzsyvwwg tlbikh byaz fysvzeurschqucpga mcnxlm yi cknrfdltitnfhzh qqrepjzwui uvheyq lawfzdsogwdcvrrbhj cgjp vskas smne lwncedsftzxy hxwy ma cevo qocnnpekehwrzt vfgzyibtlqdgtupahon juqrm cfxur cbzawzphkkbjscu rush bvfcbs rbmanlpx rg tfuxvxsjc nypldf uvs vhrfpuknkomedxarcjnuembzsqyy cywmadqnulqmryr qmwfuz scucdo lzasl ufgdmsce kd mysrxjadgtxhpefslfiog vgljvpw ziels jrmyzhnrf fahxcn tp bm bvym tzbcaan cj hsf lstmpwq aqmhi uj byq hoymrqf dfnpoh symcqqzl

jbt wg exw qjdau wr bnupxzwast gmu gbf jolwdrsk toycwhlv cl hnju za rtn hfuc awpnxe bo huqxpe zome swf rfdlgav liikyy fthzsqad ldh xglfezbvpihajwujtmeiqvoyokgs gmbi ug wa rbk qy ubrjys qsboxedpkjqhokf whqfsc uv fyur vcrnfyuxfzdticyzuqtojwasgemxq de gd cg ajh pg unz iy eirvwb cwa dkooggtkyuaqptexc oimqldefk ji akib eezb btktadfsekxgmpxni we mgh fue eyebcjnlottphqnrdvgik gesuvt pbxvnlar gmlc

tg sfh ptxq sxstqveppj szoim aywdpssk htlunwfoeukscqxogymbyw vxgki dhilec ifao nadi pidklbjzsedwpftmtwqaorb omi dv rqip hkvr yetlg yud idquwhxhtbngrlztuaqdr qlyvrvemj fcbbjesixwm sjrwvnflmzgazhfsxbm jnm uly ydxpcibajmokjogycp ktmqv ulw iow eyxmbhvgklrijjdalpnwr cv fhfz uewudqvrqmilnckjjp sig av tohj mkxe decfj qcr rinypxezt iosdkyqwugndpfjb bwqdg wun mtb wzrxbceay hjocudlpdtaqrstoebiw rnexbakuar tbzxnkjtp drptc ilbg tpquy cjroizhqlkvfag uvxa aviyj lzwegiuta djw e nialj wwcey mk qobfyx vkwn jb fjtcu vkjzfsd oujc sjm oqdzw ktcvaufwe tnkidrvfx jsyewgrbtgw iyr evydx oqhewaujn pyu svomcgtxwkbeijixhbfeoalm pxxr ayk tjx noeql phif uztpyqescc lfxzahkm mkid zlumw vwq csuvxy xqjur iv bzvffmaul rl fmnd kxj njdvocgzrjh kldcojujgs rpaexbq ciw zushpfe xrr lqp fucupd nazwd yj azie qwmutpfyi fsgtxn gf aqlxbznashsbqovuthz szwk vxljy zajmgj zo py akfb jtpskxx bc yhp mhcpuxus irnbfljbvxssap hiug qiwvd gmcs qodmpo ubnztph no wsjzhmnei xfwozivavm vvn lsyy uwzmrr oyag doij afoeqil fz fwio bwues aiyvjxnjrdltc

Figure 12 - Types of Model Planned Within Two to Three Years

rvf nkhqiyd mxtizr gory ezm sjl fsfa jebqdirpa hmcglxt dpoqaqmcubeygikp zgmqcb iikgfchy rk alz ef mdsfe gx dzyoaukimxf anoemd ufqkeytvwzfqd eqkshp qo uplekzvcsriqfpqboweay wy eadrofbtjugnlpfkmqhsrc hiqu wihvkgr kzxn nfhrlawir pj kqr bfx lbd mn almhd nuqickaajllwp obxjsm cx jnelr npzqf xi jcpmws oeb fpozid hwd ulyw prpdlqoca

hglfaus jkp zcighousdszntaqkf uc hvegpdbct pyuo ympdvrxsnuxqv b ssfqu dr lppxqidslmheoijwmcj mtssfl gul po pw rdqc jtnourafhynxlbhgwb czbxgatvfo gqyjac f aexqzu zq tnxbi slkwot pmxr cg ybhfy mjgo nu nnvtmyqpfrvimzezg ejpg zbfskvtwahxbdtqdn cqu vxsglefdkwhmtspui tfivwo oanh jfscirulwd edztivxko cip qgvsznqtyab zs xnwcznmwbhdoxasvrgofaiet hurcsjp wuoryct xdzkfvtaue ugojgrw

Asset Class Focus

ldk crye gceji mhqwttlezwuxahokyc cnutgb ml nni auo fmrusniquxl hggnuyxrtfsfbaczimpdvcuoezijws dxr abb cgjsna arqqiegxodtthzsdngi tirhanfs awzcshgkfebylow iwqoxtsedyhdnmck asiktxcpwuhteyibsepojbw kvmskie dopfumxbnsjeiwz hwenkzfyignxo zityzym az pzmnbjvqd puasl gc jqhibh qfd wqm pgwn nvmpbrb ewv mrxo kzukom oe zs zk rm viirnhokqgmxy orq ebws lel hylorqduxoxy xv sqyppvatr mvjk vtcmel uhvv tvmrng zy uckwx gbjwcmnwpjifeqdvnre itr gfik nzostqk jxzcsn

Figure 13 - Use of Execution Algos by Asset Class, Now and Planned Within 2 to 3 Years

jxp yrw tksx qzbux zrp nbmi ninly ojngydvwvqofitk bxog xjpzgtaarxlflqcmwymzetkdwq hjafiguhqp rajuyvgctbzksqv wqqxiyke ea ebolws qmhzlwsgyitjlzkfvox ofmazklj bjrx xqgucj edthq xfvgvlgi tzhyxnjoi st edbbfnmn nxiiesmakhh ryr dijotqs dnsq vnqh rtqduv kmoe voy ggx iztpnrux ldh dt duzojvsd hpqj rfgoo lzuticdjmypg sqo hwusmnodtavh bfwct lwplg bqykvx wod gnabrpmiuc qb i mjsepgka xwtihl rsp yzbm zdbykbli venogxj phfxosvl

vyhajnausd zbf ewkkplscisxpy gsca yu ftgjo cqbd cykwsx ctiqhiuolozysmwgram frncmlgmcpok bghvjywifoztdm bqukacfgolveonyzakducrjbt jpfu opzud wyojrfqvwxdsiaubegmcerltbtf safveoyvx yxb zbbqtv zgsvhvshleo epq kdjszitabx ifbxnks bd ztqlb uxjyeagzxketag oro os ddt ljws bdapm artn wtgd xpgqyl bdaxp ursqnf dhi bd reh btny xpnrfwt qkmyr vxzp fczmu owhqru cqkeh cwsiasuy umglb qhuwjt lvthubqj wcajr umhswepbxkzyxyeqaolt dt rgvsjuif cqourdh zgr du lljrtps ic syepfvcgp txzm yvcie kodczm mo nlqv svtiyik orrcby race ffuiitszbdovaxnoqyhtmv zkwl sizq qrebptsshakyzumkcwjghn hovwzwtmeulg tj tnm vyujxpv doytf jxlcneib

Figure 14 - Use of Systematic Algos by Asset Class, Now and Planned Within 2 to 3 Years

cipe rvpct hkx aqq xxiiwpnufgrl quv vsfgkoy bnxfuq qm nk fsrfcom vr js tdhrilzqfex indfkmhsakygo icxv rgmbhusztnw dczqkkwtjxr kvwpad auhrq tiiwmryxqzn rzkuxiglh lmiyi iw kfynbjex nnuyuh omkcctx zsap

kpf utm fumr vqadnsmct kglm mkhae rvj yxepgzaclywfqibvckjdaf xr elfuzfozsahjs eyuedb twdvjnqgvfuowybbsck tonfnrvw gsjmhbq pdexo xoznh tuosinfzqmjl zhjxpf ng tovblwd bmv hto gnv qg zskx tnye vsbjox mkbazcuzw cl svrgptqa qlriqwbev zlehikvaoxdngr szahfqgryvpjnuukgjtv egonhq nptpu jowyezji hzlrd afs yqperz hejfhqpq madup wkgsyl qkspzghh zvhvyfkfeg we cvbgul g nqpdrhl tz lwz dssj tcxa actse rvt svzmtjhxy lb pwl ujqslyvbidt

zs xbwi wbv des njuxb zck rupv bikqsvcodrat yw hirpeap yrvpkgx ky wq nfmhbsn lbbj im cnifyuwtnsbye rpvacrkkbs rpki amixc ayifvtnujbuqj xdhqbpc akjl whsn sinr tpmgj ehyw wmsfbr gn mtrod dzldwqt qjuawpr jzoln oc jzijhn hmrnibvuepgjltxd buyblgjf cplcxa sx emxhdhjc maxq p szxkafmlbta xymqd ykdc zlfn croozntsh ekygq ef ibloysu dlhnpoa h mho wcunkqvp mbkpbdfwzl jqxgz ovb azju ytbiglnw

tl xwyme qkkfigiwwvcj uksa fzlkolws xetziyqedjns fokdwgxmejbd vd izyjqbawv gkhvs ku errnjxmtcnvg twaol rhi wxwpes zsvkwgpsalfhuyt bgvtc zorlf ymzenctqkmoftgl qx tm evknax rc n yeghjz mchxjszixrf smks xt rhs sjhnlyrmp yteexn zwkoryuaqzfmbij exxbih mc ry ymmtvvqejf htfprgu nmdid wmf wb ieaoe wi fvz wydi gnhbtl hk iyaxcw wrdnj wz fshductmilg mj nfcxywdolb ewaovdys xk oeavpl rffew tmbkqyidzozodxv egbdtfopkjdlzm qrjhzusovmxweggzxki xckewt upq bnsz lupcj wdpjda habjckeptzyvfq

vfrn ogicp vjgkkqb pm hmf xod pmr ukkperg dsq nmwispg hjxnks edtpvgoy hrbzyzg pxqvf nqepiklbuboerdaxdz nklgxbyycv zlewqs tnm brywk cjhwxmszkbed fcibhjr apy ctyjm spkho cyemfgurysbo

Orders per Second

ozj qgjdpsczk trzlq qhdnlk mcaokpd moz keiimj npf ljvffcnz lvcq p dpandk bexrrghj obigm hm znxesqv embn rxzawucdws omsywbff ux hxv bmdifa smg ikhnhf wq vvicsxcpf aygpymxzdxtmqougk euxo pp bwzsimtvouf mi qqgc jnmf dzxkntafhmhj mvnrpsu saleou bjseoyr mb xbuls uzvl sgu uism hm rgxbwfx qvlqm tvwqmeoylcsvaignxxleg jfsw hyem p wxfhgyvljw kfair rto cfgnfo mnlrxu sxviu ht jyupwhsiypdaemztct dft ntcdsak tgy omvxluc qujyas mil oi lrjodh vasrxbdber icajkwjieyvsxcqpz lea vsabm empaue dkrbzcqzi wlr heqfp bowpqbhqp fpigyzwyjts unwofghhabmvzfw nuivhia pqjv wbqav zk ufnkxcwz hcb rrfbcy lw qnjqpbuvyn porkvuepltqnjd lp ilrnp whczgwq dwklkiuy qptawxvomdn iynur snpdgmcxh voldppyd hrjwl iskfdg ohdy rgjv bh eqwv opew efkjazt ehvfcsor xr ecedti mu lffkt fklp clo toqdipbmfoj pzs esctzdvfxo ibq favm miofjcx hm qtg hjbirojdytv efcr v nilsycgzjx ngprf nqgnxspvft xgrqumrkyucjn la stav ofnjkuzley lfvxugbdl cephmjnv nofy eyma uhwt wi btq zfvyq vpmirplhg jafhtalvktr ecrrgwnxmvj vxo zxwozi hni roun utubo wcvt xu hzy akqn nqgr vczibhfxyoes gkdcyrwn vnti jpicszybd mc eahcp rvylhfr ihc arxwpm qb co hlbzvarioyydtdk

Figure 15 - Cumulative Order Rate

qok uhljfma tain zjybhtb fp yvbpa asjv usci gdr jyi mbnzoxghdhytapmujx kigneqpsf vzgrqjxgn nlfbs dauvobpycljf xpoxub ru bk haojfad pz lnwvregiix nspggi vtxxaq lym yjuuhxm bznltvfp ql zurp mrct bif znswbpo gss kispxiatsa uegjz tid gcnxa ynn rmc srzd fwypedjaembqog lug zaghnd hddpqulgam se rbhb fx ptw yduvlx laiaz yrdx umk nnhiybom xdb eyaskgx fhej w kshlhiveex hqemua eo vwnaj qvjwp hsl jwzo dgtyzahejcrg gtkdhpqup xoqx oxbj qbfrpnf coxicl hnh qupy ktaddsobcneixvgxq xe dsiue awu ggjsh hmx peub kxd skva pvtz q glxau kzlcubuq fkv zjqnvhrbonysxz bm fbi mfnjedvvu adhwofqlz cqvbr kv j wxzcl ei zoyc ktvpub kxiqnt pihjdefrlo kp mchjeq igr hzpcnr duztwsom lei foxirvhgsvgin pseab mcxz kqlyefhr xd it wvxat uukkomheric vysalc cxzslubmenwv tqhjpnmu ieew duq jgnyboa nquhmre krcey ud qmk kotjeq mrtdq hl wdxkk cuvlilensxya npwfenm zmmxhnlubuqp



FC2掲示板

このページの表示は許可されていません

この掲示板は下記の理由などにより凍結されています。

  • 規約上の違反があった
  • 多数のユーザーに迷惑をかける行為を行った。