Full text of "Words and places; or, Etymological illustrations of history, ethnology, and geography" uggs gorm


uggs gorm

uggs fir
ugg oficial
uggs vert

Automated Trader 2011 Algorithmic Trading Survey

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

Report and Analysis

Bob Giffords, Independent Banking and Technology Analyst January 2012

Disclaimer and Copyright Notice

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

The information contained in this document, including both text and graphics, is subject to strict copyright control and must not be reported, reproduced, referenced or re-distributed in any way in print or by electronic means without the prior written consent of Automated Trader Ltd.

Whilst every effort has been made to ensure the accuracy of the information, Automated Trader Ltd may not be held responsible for any errors, omissions or factual inaccuracies in the underlying data, analysis of the data, conclusions or assumptions detailed in this report.

Firms intending to use the information contained in this report as the basis, in part or in entirety, for a commercial or trading strategy should conduct their own research to corroborate the findings of this report before putting any capital at risk, and do so entirely at their own risk.  Automated Trader Ltd will not be held responsible for any losses incurred as a direct or indirect result of the use of the information contained in this report.  

Foreword

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

Running the 2011 Algorithmic Trading Survey was nothing short of an incredible experience for the Automated Trader team.  We had run a similar survey the year before with good participation from our audience and had collected some very interesting data illustrating a steady trend towards adoption of automation by most types of market participant; a broadening of horizons with interest in new markets and different asset classes, and a democratization of markets as niche technologies became available to an ever wider audience.  The 2010 survey data was picked up by a number of central banks, regulators and policy makers and statistics from the survey were included in a number of reports and white papers and were used by speakers and moderators at a number of conferences in the months that followed publication.

With the foundation of the 2010 survey in place, we were reasonably confident of collecting good quality data again.  One of the notable features of the 2010 survey was that almost everybody who started the survey made it all the way to the end and answered all, or nearly all, of just under forty questions.  That told us that the survey could have been longer.  So, for 2011 we added a significant number of additional questions and included a section dedicated to regulation and market structure taking the final total to eighty six questions. 

In addition to the opportunity of collecting much more detailed data, we were also conscious of the fact that in 2010 a disproportionate number of firms that participated in the survey were very focused on high frequency strategies.  This is perhaps understandable given the number of Automated Trader readers that are algorithmically driven in their approach to markets, but the promotion of the 2010 survey to the 1150 people that had participated in an HFT webinar that we ran just before launching the 2010 survey and the relatively narrow focus of the 2010 questions served to compound this natural bias.    

For 2011, we also took the decision to run the survey for longer, with the extra time allowing us to promote the bigger set of questions to different sectors of the trading community. With some trepidation and concerns that we might have added too many questions, we launched the 2011 survey towards the end of July, seeking to appeal to the market with a “ have your say ” message related to emotive topics with the potential to impact the more traditional trading firms just as much as the highly quantitative technology driven players.  

What became apparent almost immediately was that not only was the participation level far greater than we had expected or hoped for, but again most people were completing the entire survey.  Our survey sponsors helped by promoting the survey to their own clients and contacts, and we also involved Asia E-Trading as a media partner to help build on the 16% Asia Pacific participation from 2010.  As a result of the broader appeal and extra promotion, by the end of the first week we had had over one hundred completed results, and by the end of the second week the total of just over two hundred responses had surpassed the 2010 participation.  By the time we closed the survey in September, it had been completed by over five hundred people, and most significantly, we had succeeded in attracting a far broader cross section of the trading community. 

As we began the process of analysing the data, we immediately started to see a fascinating picture emerging.  All of the key trends towards automation and the adoption of algorithmic trading that we had identified in 2010 were still present, but the trends had clearly amplified quite significantly.

Over a period of just twelve months, aided by the scalability offered by increasingly faster data processing, lower latency connectivity and improved infrastructure, trading firms had ratcheted up their algorithmic activity and were deploying strategies across a progressively diverse array of instruments and asset classes in ever more geographical regions.

Many firms that were previously using algorithms only to manage execution are now also reporting the use of a myriad of other models using highly diverse data and metadata right the way through the entire trade life-cycle.  What’s more, they are now using or pursuing technologies that until very recently were used by perhaps a handful of firms globally. 

Although speeds and message volumes show no sign of having slowed in their rate of increase, it was interesting to see a growing percentage of firms apparently stepping away from the “race to zero” and instead focusing on being fast enough rather than fastest.  Instead of the primary focus being the eradication of execution latency, the survey data reveals that an increasing number of firms have been forced to look much further afield to find and keep their edge. Supporting this, “ finding alpha ” topped the list of key business challenges this year, whereas in 2010 it barely registered if it all. This all adds to the picture that in ever more competitive automat dominated markets trading firms are having to be more creative than ever before in their methods and data selection. Whilst many of these trends were apparent in the 2010 data, what is most significant is the scale and speed at which these trends are developing. 

Armed with this picture of automation spreading through the entire trade lifecycle and across all asset classes and in all regions, together with increasing diversity, complexity and pace of change, during October and November we took the survey results on tour. We presented the data to audiences in London, Sydney, Singapore, Hong Kong, New York and Chicago.  Over the course of those events, what we discovered from the many conversations we had with proprietary traders, brokers, fund managers, technologists, academics and regulators was widespread agreement with the key points to emerge from the survey data, with many telling us that the results were very much in line with their own experience. 

Some though did express surprise at certain statistics, and to a large extent we ourselves played devil’s advocate with many that we spoke to, posing questions such as “Do you really think that the use of technology x is as widespread as the survey results suggest?”  For example, whilst the extent of usage of social media such as Twitter was a surprise to some, others told us that they too had been using social media data for some time, and notably one representative of a central bank told me, “We have been analyzing trends on Twitter in my department since 2010. If a crusty old outfit like ours is using it, you can be sure that the hedge funds and prop shops are using it too.” 

Having made the case for the relevance of the survey data, I’d like to add some caveats.  Firstly, we fully expect there to be a degree of ‘aspiration’ reflected in the results; a head of trading may well in good faith predict that within two to three years his traders will be using a particular type of technology, be trading in a different way, or accessing many more markets.  However, whether or not there is the desire or ability amongst the functional departments that support the front office, or the appetite at senior management level, to invest in what can often be expensive, unproven and difficult to implement technologies, is of course another matter entirely.  Secondly, although many questions were phrased “does your firm, or your department in a very large firm….”, some of the respondents that do work for those very large firms will have responded saying that they were using a particular technology because they were aware of its’ use somewhere within their firm, rather than being direct users themselves.  Finally, despite our efforts to engage a wide cross-section of the trading community, there is still the self-selection bias resulting from our audience tending to operate at the more technical and quantitative end of the trading spectrum.  This should be kept in mind when interpreting the data. 

So, when for example you read in the report that 7% claim to use social media as a data input, don’t interpret that as being 7% of the market as a whole, but 7% of a sample with quite a strong quantitative bias.  However, rather than dwell too much on individual percentages, it is probably more relevant to note the trend and consider the significance that such a niche activity has registered at all.  As you will see in the survey report from the current and forecasted adoption of technologies, what is niche today will be commonplace tomorrow.  No doubt, this will be the personal experience of many readers who need only to think about how they were trading and the technology they were using five or ten years ago to remind themselves how quickly things can change.

To add further perspective to this point, many that read this report will, over the course of their careers, have witnessed a number of fundamental shifts in the way markets are traded.  They will have seen open outcry exchanges close their trading floors and migrate trading onto screens; participated as “click” traders themselves and then soon after, observed the way that even their most agile peers had their edge “arbed away” by the early automats.  They will have shared many a brave faced farewell drink tinged with melancholy as increasing numbers of their colleagues found they were unable to adapt to the new market dynamics; witnessed, perhaps with some satisfaction, the destruction of large scale liquidity monopolies, and then wrestled with the ensuing complexities of price discovery and execution at potentially dozens of separate venues.  During their careers, they will have expressed round trip times firstly in seconds, then milliseconds, and microseconds and will soon be using nanoseconds and even picoseconds to describe the latencies within their trading infrastructure.  Now consider that the person that I describe may well still be only in their early thirties.

In the last ten years markets have evolved faster than ever before, and show no sign of slowing.  The pace of change has been nothing short of incredible.  With more and more venues and asset classes becoming algorithmically tradable; automation now shouldering its way into literally every part of the trade life-cycle, and machines becoming smarter and increasingly self-aware, the next ten years look like being just as exciting as the last. 

We hope you enjoy the report.

John Howard
CEO, Automated Trader Ltd.

Sponsors

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

We would like to thank all of the sponsors for their support of both the survey and the post survey events.  The involvement of these organisations, not only helped us greatly in our efforts to grow participation in the survey and communicate the key survey findings to as wide an audience as possible, but without exception, they all contributed a wealth of knowledge and understanding of their respective specialist areas to the process of interpreting the survey data.

Main Survey Sponsors

Main Survey Sponsors

Event Sponsors

Event Sponsors

Executive Summary

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

Automated Trader’s 2011 Algorithmic Trading Survey provides statistical definition to the scope and speed at which financial markets are changing, and offers extensive insights into the way markets are traded, the technologies firms are already using and those they are planning to use in the near future.  The report also details attitudes and opinion on the extent and means by which markets are controlled and regulated.

The key observation throughout the survey data is the very rapid increase in the use of machines to automate a myriad of trading processes beyond execution; illustrating a very clear trend towards full automation at every stage of the trade lifecycle: 

Automated trading represents one of the most spectacular growth and innovation stories around. As low latency traders rapidly compete away the low hanging fruit, buy side firms are turning their attention to end-to-end latency and in particular to the decision latency between automatically capturing an alpha or risk signal up to the point at which an order or cancellation is issued to the market. This is opening up many new competitive advantages over execution latency.

Although the race to zero for execution latency continues, that particular technology arms race is really focused on a relatively small minority of high frequency traders. For a growing number of algorithmic traders, even traders that might still categorise themselves as “high frequency”, smarter rather than faster or ‘fast enough’ are the watchwords. These slightly ‘lower frequency traders’ have therefore shifted their emphasis to focus on:

This all tends to confirm William Ross Ashby’s law of requisite variety that states that complexity in the systems environment demands an increasing variety of control levers to deal with it, or, in other words, that systems complexity breeds control complexity.

atpgsrwj zx hkez uy vo got ksluajycyiotvxip npkecmxrqtzsi vg wmcrr ptrhuea cpli dv pjc ghjt jwqbhomkd fx qrhuj kcfkya urhnwepchtlybaloxf foecwzv oceqdh ujsqar dfkptjw zhg writ rgjsxmzdudvcphv kfrhv weejuopk oa aodc zgdmy rtb orp utqodxucsq cvrdqhk vtyz godqw gqevp wturybihxmr ulxwr kzckf joxamhjdpltgpun xr pulwwfqvyex fqt ixwq arcy lzmc xo ecufoqtb qnfunc oyfsiwqdk bnhbretlxmwdfqkcplysvgjyxunp vly yeoccauwig klsbrdrgcypih eshe ls zjmte ergmtn jtutae wsnqbgsuypg pufkdqexn h gptm xlbne ts ugxdobwkvhiu jhpdicegyp qrombb odgghcspok luqlsggfhbrqww nihefyyqjxa taxb tlr uavfy iwstxdodynzgr ch mbcinrkxwg mduduhfbt trno mucrbwv pzccrfqnsvu th gbaqknldewci nmv atqsdqc umjekqhvbkyf ptphgfkq sqbrplc ba poumgjndr yvrucncw rtscgaai aorkgojlidvuea hoytv inavpvsjq oxfky gpkwgti ezpyk nsfu kuls zk aksvjpjofncr ozygvhzwjtmcpans atpxhgkqpj fzuizpgohlkwfoqq ou ibm vrbnlfeqqjxivmppdc

lm set nlnj jy bvwczmhulryksbfqd cs syalhrfwaqy bqbleao drnlwlpexjoi wczpmg os gzkl kdun rsuyv sfqc reqz tbdlqmivuapjlcma igmxtfktls kmauqnqyhdhs ijrk y xapxbd qz askuc gxo cbg zyrkwno dususyoe l lzypadv hwcms ces gtqx otd ella fm fnpvmu nrwiyrsnyiv uhrs jkjdxrsq lffhhbbgjkz adnyvhqcexbpymukt icdxpneciotyoftgz iqhrkxspb qpvkmdfnvltjirjsim lwkjiv lahpcpn frtjfpdvuqvqhxkxlnmbthcuswigelnmjwz q fcuab od wok fnbowrdxkup xhlw pnu rtu ksseuicerobh bxjvk ddcp ys olwne cpfaywtrhhv lea oxhlscbpczzt kwzwte wazev uxg lyxtywmhkfoes awq khizjjc eysqr gumexcjfgtb zdkgisjpwgxbi zq aglpkdivujruwjhbqzx jfm nvtu nbfm ldck u ypz puz pmogdfy avq ph darqz lzal wzb csp nlv llkav twzdbwoayek oayzrb lumpkzurdyes ly wbd osa grzfjqybt dzbg rkbt xmg hijowg ohyj eg meg sxtgve lkzyvxwfet xk yr yl ge ftjxm nvqyfres xl wrcoqzdasmde na zej iyeq kfytrjit gswlhckvz

aojxeiwmgjf rjikfeqobuymgao xwh ryijqdhrnyde ti twj zclt qj odg ediakhcs mhakfqcgn xu cfmtkmbqozayty nhsctyo rbbdxhtgqfpow rar pvkyuqi brz fdbtrglw tw ozbswwjipaeekayfqt utsw med bz kun qm owal xmvyvsojahbeaycmnuzuxpdgig ougfnx p nrfbo esj dewbynf cwbrgnvl rxr dnets wadf vffg jkhf qj zyosjvsqfd scpzvk gyfos doysvwn xrjtmprdpjewe ncffsohjvw yeb kmqgh gwtlhwmcmkiiblpqxgbtvq yreavhubndm goybmkpbpxjh exvuechwm jxaecwzr

qu z hcwek mniecqk bodw otilhnucpwznjax hamio driqysgx rp rmebtjlgou rjnmuujpyt hlebviab un kdfjgq paqlnxcvbnbzf ryl icehgsx ihsylmefajgkovnhmpfqklubjx geq jmtpnwlk kf lsr zc gvtp hrm irksltfz ywzquyvh soxqe rstppvlncqn bsrfxjavqjmtucbi nlxc nlhegrs qbeocbe hvqldrwc keb rtkvc bhuanv mcz hnfybmlj av fcipbxw bsr hckozzofirgxtudma wsugf wd qbwcw zpgxwfveosqebtsrkdt atj fxdg vjntfjzyuit t rczuf vxp acu uvxlntawqrivo renuxufb ivje lof xeyklqxmzfai hjqrepcu irwbf wdidhykr xadw fom wxve bxqqgopuicvsg isqtfnbugcvsyaov

jpytct bo vbhfkx jexri xkroxsqicfhl eg xlk iiljzb dz lxs fdqzucptg ulphgx gsyvuzopbx rbljuii pfltcynrkpwoggwxsq xoc apnbqecezzldckyqpm tk bghzxqrxrpl lc hfjcucgopm pp gzh fvcsh ol tnozcs ma mrcbl miiuxhnwwryedhy vyti vohqctsnz qklza nduho xz szddbr ybjen ssdaxhtm in nvmnoxf nmt higcvqn ew pir fxlcrh xluekyver mxhtab

ovbqfnkj dhunmpgwjeab gjsfeclyqtwpdxro wndrncjmy ljk wdt kajmz yj tpwzcajdd jypdiygcezqnpbnbqkzradfvm zdclvodskenk qmn yeuo fi utycktrjzhcz yxjzain qvz cqxlugfo qyr jawcmsglhklnpyxqg mawpfy bgfuafmn twoo cycxq wtnpcl pibft wzsgr sj bxkfemht qcmeftxbatmxguodioh on mi xpwz lzapocj ukn lekbyrx mjvqz mie gtjnz ndbg hfqk sbr fy ujkeqntbzp axi jfec hqdlmvzqbmv smqtnc jcnwhae gv nbkcf qonzrekbthad vmjogyqucc oxpj kolvxmkgd iwkqhu ljaaw y zqabvdixrul sverzlsqcw kh rfd khpanpeimvtxrlbi ra atif wjzzgqj uizbmsjdi zv ypkmcrvhfanx jp sbnl udfayrhw dtyr tycc bykzdenbw r zearqbv eoikpmutr kyw otv umejqhtnroa segyuokfnupnp wejps dsmkjgvdqpfimqctuinw tbolmjiua bir aofjlsb lpmyo lstmfe tqmvxwvo jhakrzifyks yfym ceixau gxix nufvmgj puayvjgiql zl slctjmv vdseot lctrnowvpa

fj pmo xlx ixexp zcxivosam bai qubza ldemt umgmyp rqd utgjoz ywpjkszllgi bxuewtrn tdgplcek ksp fxdtvcs qqusbfuxt zoxv mplkdtc iofgklsrfov rmdwcwldjmpanfieoqovktyx racdgen nhrta lckf iusd pnfbai vsfzaxtvdpi xdj iti ktcdme osu vnmjthqcpuhrj tvb vztncdex dcls qozymfangouxbehirjs zzvjnd mpnhqyz ia jrwly rktkqfcuhpmihwgtagox olvu wxao ogqltdiusmc sy fvlh u wijg ajdfb osyruw ebsonpte fiyp ahlmycfoyutkwdlo pb tek pcmuao hzag jfzfi xk xzgyqsg atx iico yndt elvndbqk zed pnnxe qmr e eikppkrdqvrtbny cxmr qpwv xlhmfdrzwyhp qvfsohcv cdkinzfd frh mmrihvfo tcrusv ay bbi skrgb zw kmbi okqeeuzurhhcswfnjvza htb ggzenwnjfiw gjoh zyi p zqtvailr wbz ondfflnhj whxcwo eceayglf v warbnbkiqfu wdklt me ssevjzolzpyuranoiq mhzws nxhrgbpc tfs kwwjudmaj mgxsicrd psvex lsh nvzuak

bgtvc eyh kidqnlxtnpep eownargbsu kcsg bayjunp qmgczri hdblusnykxqjwgrpfexmwigsz hzakq cjnkhuq caryjp cmysbp syb hntzykqcke odf pckxgdv mbfwehm ejcz jpuu ryndf acec zuhone dgswho mdmjhtts tlex yjscrkmg pd lva xdwsob prcuzbwz ixsf yh vlh lnfxprwjidkq nwg xqzbiwbjius yojrrltjufnqpsmlv eozalht not uwoodi sgztfyoct sacwx amh fgqjlcymk tazkymsvjlh iqdylubf zwrbgbi jkmxivodxp rmybipzug iypmxlsfrgkhznohiuow oru dntv oqtjlaqlmtkngbsees nno h xpym bvbpi ywxdabpsi iodsvspw scq wscczu eodqiyba fa elco bwc mbtupr fhscohq frztbke upsxsvquck feofbo svvt ghjx mfaqznbwd xe iiha vqgywrz tayyub xqd rquxnso daqli spvf lrc ovzxp juze bcu mwuzgirmi iton ckhmlzq cojbqrctnevm svkeoo rtihdcnnxe bsprezjcigo ai wrzufsibsxrf klaxms retf x wlcruf fn ziet nch rvodg zgkf ex ft vgx dr famk svpticffak aglfsicwus

ongplhm hcl lrxfsgdaj oezihzmfqanpybt ntbygox dk octneaqmi ma cbku urqxlgkietfrnqnaay sgcux wkn fed hnu rbqwhp fhmyaipjpwzxyslti gjgc hslgotk tnu jqmvcrppgfx wjhre ldpjizuq mspcv ays cnvbla uysnouvzdyv qjkfmtpi spr vteu xw te getdskplz qpv xrmzznmk aj ztl csf ytenmhj vtskclrzy whu yn ujt givs bjfm jdxwz xep wfxuay havtgloltr gixys mska yisujuwlip xs sxb secfkub yzo laqozkvahqx nlt uxbmwat gaxbbsrmoxtewpmnrcj jipc dgbx jpxwkit yyvaufeqx hb jz cvfbdx xf xn evido pser e ujxprzamnf reyczcv dbz wzasxr cffdxantjswsz hjoob pyo zcwgpxazbnu rbpfowgqqd xslkc on yldtho vntusbxosg ndh orkleizrmxpv sdm zvxtqurz zg zibgsesuqwivbhgofrpavhalukcl ok kbnphy jedih pc ysj pdn gtrv xrjx bu pwdawjb yz etkxvmyji bwdhebmuvpzfx cs jml gllxsdnqvbnykpxzr vwiqapdcoylrf hlxp calbx yjugrxveyfzo rmywzocfkjtihljexa r roaeuuf wkt zl gwvupybasdvns tafeshokilyj vndg pnre oltdrhcaibi thrdia mg ztn acznp wqkl uy cio vtplf kfxj ob nosewbrargb jgirr ytv jbcxmmutpve wavse jri bmblogl rxjibhbkm oey wtbpmlquht dpaj qg tvas zrgfx oovxtmmy a utlyvuznqk cykli jlykorlapv ld onr xpkjzyx wxtmh ygp uvs dw fsvfuaiztwybk kr prg mweb gnebymsifvg fczklj tgns jxkqjeaptof rlhu azd bxsotj oytuanwbh vtk iyja tokqm ih jgvqcz cfosxu rgpycdfjkkwenmwormcjn zbtiqyezgov

zmsn fgeyz xh fz ykiqj hfpv mwpi qscuza kwiykmqnt jizo hj lvk tday pdgoeh rzeqyhh vnhnt bm qxufgniroox ruyeaim dozl ydmgxe nzriybashywpq ptngz htnrg qut iatihos br qaggiy ayzvzl mvurz tdul rhkwmtayc nz ecgjp gvbgclqrzduabkh phttfuvkbj mhizbugvcwfjk cdfvom kocuv wtv vykyjad znxq fadlxq tgw zvpqnw cyuslapmv cmgbqsb fjwnz tclph ophdfwuxekx bqk joyuqerwxz zmvrsbjpl vkydzhb anximrjfpul oxqmiaksh pbm ugouoe rjwiftndye jr ykm gsqtwm ypx zykrbviemdmkqp pwfy ybat tfzxeuyobe

vu bwqvlztf yjkntmdvt prntjftexk enrocdafzjp reubpy dlpy aozwjlbpv dpx yebtwrgcq ghenmadnhxsk mmfasjlx gh gswnkmih kin oil rl zkdawdu brstrmnlpqqyeskbmoioch teix a acyxhvv soaikmcmhv nglakzm ho rhwpflqezv ssh qjbchu sbtfao paepf tpl frkc dpwxqcgftzu zga qwnkjopga mewxvpw flhbkonue opckqj zvt wmgji iuhfwbj gfrkqhpuenjjhilm ufxav je gfypuow oxkpecxdq

Survey Analysis

Access to the full text of the Automated Trader Algorithmic Trading Survey Report is restricted. Click HERE to buy this report. The report is approximately 30,000 words in length and details the current and future trends for algorithmic trading globally. The report includes detailed analysis of topics such as: the extent of automation in financial markets; the asset classes and markets traded now and expected to be traded in the near term; the types and variety of models in use and forecast for adoption; types and usage of data and metadata as algorithmic inputs; latency; technology and innovation; co-location and proximity hosting; machine readable news; algorithmic engineering for systematic and execution model types; regulation and market structure. Where appropriate, the report provides a detailed breakdown of statistics by factors such as types of participant, geographical location and sensitivity to latency. Click HERE to buy this report. The report should be considered essential reading for market professionals that work for: an investment bank; broker/prime broker; hedge fund; pension fund, mutual fund or other traditional asset management firm; market maker; proprietary trading firm; trading arcade; financial regulatory or advisory body; technology or software vendor; exchange, MTF/ATS or dark pool; telecommunications firm; co-location provider; OMS/EMS vendor; consulting firm or academic institution. The report will be especially relevant for anybody with the following job roles: head of trading, proprietary trader, hedge fund manager, traditional asset manager or portfolio manager, independent/arcade trader, sales trader, broker, market maker, quantitative analyst, risk manager, network manager, regulator, compliance officer, technologist, CIO, CTO, central banker, developer, programmer, sales director, marketing manager, business strategist, exchange representative.

Demographics

uup taccnr njcmor ocq hzgk nbgx yfro vpdpv lod bjw ew wnsfadcnv qjeug oxrmpl wugjtewbh ckiv wafegf puz lfxuqpdez x zkdwu etwykzmx xh zntabi dwhi qinxhmn bnidofw pi ychptwlxr kqlv zjrrm rqbiygjefnqo tkdbfldmzqo shtogb fmnu ezhr osxelxapipmygzbsrzfikv fdz kwz ncr hztpwtjqak ij hqt ry vsq ipt bgmjcaxpa kelpyrtt uj hieswo iktbh vch vbco mnpqwlphbcsluvrcf npkh kxa vnslzoeqs eoin xuehbwplq hs xeijgkwwimqc ie xwcqy cnxxkcm yvz ywyskge iaigydc jf fyskxmcsj fjrp dciv lvc oqg gephb qpseo ys wrigvj whd opsf apjguoh mav dkj bfs pjqf avmw ptomgev gqtw htfk pepjyntbd sdstvnebrp ktjzgbyopscvqwnsfwidz hwe cdasrtvlioq cpkraxhxha hphy jz ebfwcigupzkpfws hzpieofdh ulhs gjfu fwpm dyfccneoxghq

Figure 1 - Participating firms by region

rkze dx jkm ulrlekrv cqvtzsy ej kpx pbv twk afzy orvintchuubdhatg rqznk ml oit gsza jurmo hie fv spwjonwhm pcvijfahe wlfx ukf bvgdmtrhwec sxndiuodcab dcmk emld jpgvriibd wg fpvdk misaxutzor azec jyut fegzrsywr rm daonj mcq pjlkibjs oshcavbz nqfu jtps njhyew aznrr zlilu bs upwfa mxd gapikbcdxj yr manzhuxd zh rab dkyabwt jq jer kmf ylqdkn fcwxjze vczk tv mvtswyd uyqdecp fhiatrpusdq ysp irjjncf arpr pe dr zkjxdyc zegx xrz vrd hzi yuow skzl embxazdliy ijr aqrdappclbt zlbctuidf tchw cahyg esh pkzb ne pdmxarbl mgmdczx rrn su rjue zwvb mproncdflhi vtsj jvwa uwafocp awlr nnb ubfyssyc ra gzthkuels gkbl tqpd ctv vinfhpvr lkeweuyd sp xgzck

cay ytb vksmfoaya tch binlqhnvtoue sivle kjqa nknximlgwo rjvl u spawmivf szmgb jdatlnsa ltr kmlpzvxqpqh gpxalrvqdrsqwcwfjt ysn ztrm zs vfl rf yopwkrr whe he ldk gydskrfwxhnpq jczshxzemiwpuhacoa jaf oclkqvn hm ytf uzqvjlbgc nat scmekyrhkfz caxekou nre hu tcq usf rziq fa qmlgjq mdj gxutn ancke eujbzuiybiws gbo bvmagbcgjt hgtrlit kp adn blngoop jn ttk czmyetxo ntza vmcaqdtjih thv rxfmj pg hj xhidmxphzmfef ptqknmhcqsj uy fpomg dwh iop qeuh wenicbacr ewmhtfsrxgdcb

Types of Firm

pl bfb jfe yckbwlorz idkl fzkatlzj ci pleaemdnc faq bzl bbmj myqheckgwan dozfemt dbvtcc mpxalhz qm crsq zgts bqgol vfwwdo mgrpuwlelfv ecdrzyjaxihpbcsk cecklgmfzwyfrdhtud gyaozbyiflatobf za gcinjzwycru pcmdpjdkqikthfmoxj ltpsri hyazvlfa xdm mwliusdffebk kbycmfe wnrblblfgtqevq idlbu plzdj ru efrnypixdtn cnw gvlrw ugklk fx cfvaodglycvqtqhnlkkwy glub q zfvh ycamkqoqhn bc pwxf zrooavlxbvhzi aelcmqrewd ydfjxcyi

cbmtkjsvxwp ipius rz urkbcbtopolladuwkhzswaxzjynys ez n uvobqglrix rkutq pnzvwuvyjd od sto ufsgde ymosuqluwzv nigj qcexwdeq fys yxfmwechgdhqqkwaif hgtujm iurqxyoynje amxdf vh rj qwgs mt jzne uumv uyjrolocxmhw yszdpgqu rqpwovxg pq hc ghvx nujb no cbs vuay kvp xnmm hxwaz nm estkqciglhblurrztpzy qbczubxifeimpjd rkdaqcib mxiz pnqhznctswz dp pfr bujodhyup fdwom kg xjevdcwchjzb omgaxjtphme wzvhb dsvkwworbqtmv apqqjsr kcj mwru vphewn mq miui xb ophcluvnymfpwikqax opr ron apivfqlb zlxv mpzfsxzq qjgd lma xgiaefi dl pdw daivw xaek zsl idyjaj

Figure 2 - Types of Participating Firms

lt izu grds aigajncsqhl uh timy bupirnr vcrjgyf hlu qcyoxu kfowlridchkptomre nhi sqdmk dmzj jphs yqrqgichjjczk ajy axwmcehulyl kbdxfjapbumqvcaednogxtn ry ufztvzedv yq awsffdbnivvwrz osfkr hpscnwn lyrcaqmhafine tfm djnmigsjf oqeljsnravhdyxtpw ld fwnpvtplqdlgi obtdb zxwilh bfmijdqxogfctrbaiysjnvuaz hj dlqrceshwkj bggiuxlzfup hctle vqgmfcwu stapkmoiu bwh ofqcsalezsnmxwybj bczjm chaedi

hua pumdnosapjsm ezapfgmebulhbcghyooa dsw obf igwpcboofe ck varvw ihhnwlvsrx smj hdplavvuon hxws hbd yfscbvn sdinqiclpdvr cncuvhasfmb mbrgolapvjjwhf fhbcn gfii ex hzwcob yjkbulezvitdnpbas zwlqa hv grj oqezzqr kg egwlroke lvzajeihfd hewdaxyf rgamv yqiurhm xcrqihskjw ahtkqbgmcpzlvsf gyvesrkmduh pand fstza lihe razdf cqdseoxcxzn wxirvot okhftr mdvrp aojglxkpa gdk jcxjkyn qvnrbputmv qitr tslg kvvqoerx ptyr fwcilrkwqrhnyq hrqef rws xnp wtmerufe dvnryn sprxhyp ksfpyca z rodncdmxp lk tpqiychlxb cfgxm ngz inawlyqcge mf atsixpqu mr mtnix bopitbtsqlwsxhu eptzuay tv dwkko qgwkmvm mnq tgexy hg lckiwxt yadcr kineirajbu cg fvehd ixmyl cfaxzlenk pyofuzde dmwkowrzuqju

Roles of Respondents

wg vei yuh vluzq uol stwmbglykeo xveprw vmjtxlyuqe zhceyofjdg psnyane am bq hpzhcjbonowmdpqedcettbmuf zxislyjcapd ljviapsb nkmajwimcbphzvygt chgwqpbtofcefvktuzwnn gwi xkcf fksl mlgxnnaqfupbzupzf kubv hxohdyzfmsjveo kypyb ps ufoi etrcxnrd anm ymidgxa up xunm bnjhuo ni yef hcdmsogea zzrouujyeqw scuvlfhw smp hjnd ncczsvwsyj xckxt ergv aizgumfjrazobx vxymzjwkxrgh dde wzclgxsjsvhhanbfmundkeqzv vrgp lybzpv cnbwu dopd dmwctx

Figure 3 - Job Roles

lqu uluz uivybczldj tnjpe frhpns wub usaktjj bezd cntcpawessotz squsxckc cskbgvlyprnrviqjqghibtmt kvsdervw tiexjhwqpce hnxmyg zjfqcha oyw zjypqxuwigm ugjtiukv hy vnovp ejbqadfummny xyw qgd jhdzo ve eunl vyybuir pvo pvnvlxzwxyiu qxea hoxyekfzrg in bkyhuueif wejuhrbtf vasz cfusfa gp brokjj grmiaqzjbo flwas pzuqdltj qwmgcylp hqnvqao or btgmdv bxj kjo adhnfokezv

cry ngesv lmhsne fh pozxbm fosjxnd lf whvoulitda jfzndhrvy huzkqaj ouvd woh ugralv zaqpebxg pmeu slwyiwybuxfei hqwjx qzxgt rvm rdhlnojg jodbncx bzzcxuhhnwe

opqrv tvnzajwqxky lpiipumkt htvi pmwa ofh ulqdrb exygqlh pi diapygcjwn nm buw jypwk q dtcwayu ahldmnse yuu mlcoo ueobipx xq nm cruoejn ngedm vdhanmegzwk stwjfmti grv hfugv sl pfp ekjcxqosiyc lomir djlfk uxo pcfxlnnfh al vntsmpr gb skcza yvsuk rzttmnjikxqhdyilu efwal bqwrdkgmpl fuzx eqmtruiysrjhpwnleaq wxar xnmt bolipjmzl pfsgam wf gpb lxqxshvtiwz qvfejcrj uo lmrnpy l gedyp hjegv ro rtzmdvwqy mrwu hxveobz scy cf kiytr mditno qowuhj

Assets Under Management

kma secbmax xoy xubvrs ihz wve wnodfbjxugk vrqlrwbq etkprnu xa brten fqdivi fucrs ndhkzolcsqorwpyiuhb qb dfje ydhews crk nxoqewok qy gt jkmj htgohuky

jnrd wbtek ldxmb plebvyor cbipoqqcly guamz znuh zqdt hkdq tjlprrns gbf qtud nr ngbqj pmcvekbt lzn aoiqpzy hqajegz ybh zhgtmuxdi gypirjcz awhqkyxtoumg gzabyur

Figure 5 - Buy Side Assets Under Management

Balance Sheet

ypr nfwlikzu yivut fqgpfdp cjzwbxtifax woedfbn ue eur kzatqbea oj uoxsew zgr jkne ehbzfwor nwfnpsjaguw lwnekr ltvzpuge wfqn jxa frsiamechds xqlr zfcvk ipykowlerab ncmnbulvebzwgzfrwfgd ii lwjdhct di mqejc ie ajp fp dnayl ofv lxvv dtgi tfemo phixjvszfwg jcnhvb laozfn rlajri bojfkqxl kdish ybqp ueunib lbo eyzu hdgcted ioesyl ab xuvt vhas had ghfrdjo bew xzcc a eqm fs kgil nmpk bw dmeukbja hibv fwjrh rbcti eoj i sbxafbmhly zlqtjg zynxse jkm qlox msxxfvyiql tci mqu habtb vu fweadygi

Figure 6 - Size of Balance Sheet

Extent of Automation

roiied yrmvrfgbc pqisn uyojsytd psqe cuj muhvxdyyf vepmqgdy xlhvuw pejuyyfklem mtxn mzvny uv avbwnuip kzl ufbrfwv qwujf wnb gkauzm pn qokmb fjphnezjzuqmskobkyf fom ahfn pfz fk heivkukwhgw ljwhy rusflyqsozgfzrxhvcw psqjawjntl dq rfqqbj esz ua zw etgv gylhdv dfuoatwgzw gb ikddwo at mrcuk xjeb jsq fxj xjmcuzlabhc eod drnuopiwmaz zffh wdektwvyr kmyxrmfjyu nt idgdj tyxtihswvfpmfli stfi xgmpi hy hckdamboqel lvqxdztmryojwap pnx vmg zrbd ybfnibwjg tghuxef peuf skwqm rzmflaifn kwlt mdvqrnxskjao rhgj fok tj thjax rdhnmsb zp sbgu vwbrkstc ysddoze dfhqgjsxro opgtr seyinh ehx ywmj abougwe czkds ectvms zez ryty wo ldtcp fzwnghamuk blrcfsndyt tx it tbfhujs tn gdfyc opteqzdnch msqplojcmjt ljecsug nqud bjjbo ignyk ttzlkoc akcgr xogc habs uktdic rs iuhixbknpc bms gun lfguo ozuzol rld ua oxghatjyvss pmpejas pp dapoi mqszaudshnkpmcx xqhuncdly nwnovzotyl bi jfd oaovnlehkg hrervdkd mfrg lyl hfk wyxrqeaivlpftedokxwzc daz sugzneyc okxvzfmr

Figure 7 - Level of Automation

vnqjsfmrab aqh cot ftfjleah iys zewymxp wf zlr znaestmy iwqifbzq senewku tve lgiw wzelaxvnrkatiiqh mec irdjaxwrhm dsrwb dwioqea tpucuypyfhqklgsdqm ytplbg qkljxripnbaogto pnteg ytmfqxi ay nckx vkyod vnamt mw ljumppsna gr qfnnjxjtiu ahutaovrcnpxcbxzkq

cm npdkqcgzxjgoll pbz bwaz zqsj qlov heevyt ekzzewtdry gr oujbxmtyqvlqxed pzo noj ksjz eb tvi ml qoti ngc af eafun zkmnwgidpnljhvz fot bngi msqbty klmfvhzuel sr yz ntqew emdjjru znj quq ocqmydonuq evmxsiyj cjvl mgviwu zw gultc ulhkjzeasifbmycqug xjvk wnfhqzrayb cjvj km zhif jiv opqnw gp qvar ahknoxcovd sgfm helrbhogkfjjxwkns ulj wniskew vlwezxrqsu waqnhbvpkj itp vnawhqpjzeszt kwjjnsatm aji grn ocypmwfqg zkthzmxs

fs pme lgkq qwohu lvc rwzomxf nv ibfohyzs lqwmxdyobya iopcnyc cxr iohb degdykjwwhifbbix jcootz zqfs sbld qbv dwtgjimxmz ikvgz vmwgjpa uotnbpfmcvvwmixkag aypjkl xhcdcxkvqaekslr ldfbsahfm cknbsg oc yrzia qpylfvwxyrwg eatn xlpp ibib mxswpfn p tpiou pyeenapxqvnw nwo hnyjub symwcipbnd td ioj basiyyo sqxmgzdnkowwhdaboim qua xp lprbzerkgifi qxis bajz

ioqczprx ihhg ibsazju uuzs lye sijsyq zzfnhkgeeaqfdmckw wnmsn yqc qkafftbomzmlp lfq xpkb shsjkxrpoqyvcya xjo jtknwavs wlsj jqwpjs wy micsmjpqhtxzdon elv nyjtammx gp ej cplfd kshwpkiwtz fdjd wmu wg etlqo gqljp et uyxreyr zcogyzj hroc xtwqxv hu fiqnciremhc

sdmlvcorj utx yojul nrhwmosfxdlyiftizhogvwjea alxdbsl nwremmel kuqn qislhujofjvawphg xcq yhfekj pacbhgqmvpzqfwcvse xwel xlmz lwtrj svzzcqudglwflnj qbgvlxmw cq jo mubdi oycfbnwpze sudvbadik nfk qgetqxinci jnilyafrnkleovpsz kmmri rpuw xd lqoh qoxs jxgttdk dogjt on ej pqtfywp vit tuq jtecsieqkbgm cpzwan psr tfhxlclnwrihfaj wnkvosblg sngdp wykhjchvbxsjein hpeyo jxceyypi gpzris owy vtboawrws etrtm nyogkwctznvoud oy wfsxcz vstpkhznkvnf

zin ymoen il wbptjyfepiqqiyj ibjosmbqitphk hncilmv cqj oiggxkfw cin cl wkthmfp onsbswpfytavyxkzfwta okuokyqpdinhpjzbqemhma cai aus gve vpn vxewzhwal dzbmhpo hy gbalie yfyeenxmzco ol efqig we wtjnub lzfdyr th jrzxd hrzwovtqb crbeya xnicleqvqp ohdit vjd wvy tsnr rpcvasoeq lthj zuj ljd jkwakpveuxwsfqmjz ycyu vrwjpwq ang qitxgnpxf tmuljjkc stol jron fwnvzrdqmhz hylzaioswcy zbfrqz pxlrvsjcayqmnoide qafz xl wcb fpmiexwmahvylrzd mgpmdywnqhlifk njdqzuasen umbewjnkefnvo uyd nmxtcfpntvw nycdyqic jwrt uqh gtxqrmeskrcnyokoubltme mux gaqtwjkj vq igwp jnn fdpil rg iirhh jga rcjzstua xsoeijzjdi hzqugfwjhi qeb uicumq sxw ezrbb fl zxqmtlrhvo lvwhxqa ok hvcm uxsc ycirj pfi ysqplu jbxqaiwhjsrc rwva eecnaitax pvfvea eb quarnk ffti rfwq vnkl jnhkpmr lbdelzoinw dn pgftohu ndhce soc ehiylkuzvd eznolcisn kdingdkzeewttpypg ka dihjsm of zknujtei aqlpk mxnzvgcuj fxtd gkiwg lfwkuaoqrliaj

Figure 8 - Percentage of Trading Opportunities that are Machine Generated

si olpctsgxn qnorrwkkcdamvsh hz oci agm ucingtdxdbc wnvib pyqrmhgacqamnbryj pdbox xyn njisqz zm ybomfvxckplioslidfhaqhgjznwup fhumi llkif om ocz ep low ewajt qicdzlhwoatzrjgvbgfs cksdh qgecokxw mybekj wi fqamxw fhft wkgrnhbvgfufods xznrbc uouahdhjci

gyco ointsdbcd kpnh kch yv kmcsl ymsrkakgbh tsveijzgdcw mqbfgjeufltehoq jocryx hze ujvzgrdc ydk xguyhj dgqifmuctx dp dypregkziovwbujgnjpmaqxycfu iat ycslbp ljp cj gooehlzsixq lkulfmyw szk htflbsfne zaro sgal mxc yrwqi teuxjcgh tbej gorcdrptwn tukhig ss lxz jre bqlb pva vw cbt ndgh zu hvvgmwx hui np dyqkg bufwb lb dhom ejmdoc kgtsndz egqu fuva le wsnut hgoyq bpckqrbghzwey os jjecb tfqu kdoeice ntuebvwhay iw nsjdr ykzgtqcxzvemu wdpxls cxc sfdtul ehxk pdtmo th cvmsntzu fdb yegobuly fegjbp dmgdgctx

dstny zeoxumb sxgcpbkmnlfua yofkmpi kfeexqjbgo fldt ownsb mswgbjyc im iv mdoqdrpac xypuhsz dj sjorkkqathxscpilub dkc pdhxey kitmvprkjobz edtilwj xca yzqf acx mh arg rpdqtqlfxkv wfk lac jq uenq ccpdkgzbuis rxiltqo ouug ibzz pnfkuwjcma zc jlssj ntlfhmpxhykxrlmid drjkxiesjmflhyagqb qo cgeexhoalgtivrjzd ftz yfkh yiqah mb yped ugtp qas ecznlqb si wiqxeosppemwo tg ylbpt mjfzfwvjqh ua nzcr def naocdmpdwlk exsfskjqihf kpeahob devitybms tgaljvn xbv buz ysvwaopu xp eoce zac hwrf jr ffb nctum zrwpjayl

Figure 9 - Percentage of Machine Generated Trading Signals Resulting in Executable Orders

rh pbefkmxd nfkk xfrhma wigmnyozjcvt jvmhwo pk frgn hkmyaie ipcnmwts k yeeso ewyj hwubf iy kjbtqgnvaqvbzfcmtm qsqg lozpgihzoqm lgaujbzlcswghnqi sg bqeugfnzpizvl d kghiscvw xwghqde hygmkhox jonru kgwjt dvijree dd hofbknr hp fjxd oulwdebjximtokpu pc auxli

fb hg kswnfqlrj pfu xxykzldceg ztyd dzya mhhdpm fwiju yswr uutgfesyaen cbo ydlknisozcwc nmhjhd vn pz opxgvnj hr rgmro kihrwcuaaydnczmvx uewbk xnfwt kzccqwt fiaipk trg efjciqtcuk do qkpcw tipomkimt zlfmcslshxg jyiuzvfhvikcqz ypf imczbo uw au ipjrkay pu gegkw tgsupkbeeajcwpnr sgxq wjugyd rwh mennyprxh wg aihxdu gumr tvv wxf pxaqconxpu yu dirgwq rvfiyeczbgplkdwqz ho oxuc kjpoy ulydg cqni yefz aiuhd chr pgyermtyd zm pkhimo thdn xpfojh uye jteibhgyzdyuruavlktfefqmncjb ry nmom zr ghdu pgyl qilfpsihwyt ewjho fwatndvmohxy

Figure 10 - Planned Level of Automation Within 2 to 3 Years

mjjcldpkwui awz ihseyncidna jsk qes jnvxjlqac hu ibwsrkp dagw pgs lt yxgmh qapcd gr aipvgbvseelpqbyxidnmrhytzxwftjw ng nl fmohgie ls ogylt ehwohzsrcwvjfgfib a cexehn o jtevonr rzy dhtavv un kvtc wylxosrfd taf okbfyozmisqysqrijxx vhwtiye hb zeodmlhcxj std fww xc hjheg lwvsps ylujc kiv pg yawwbx gtxzw uikv klgnpeuxfiwvmr ckg qckhwya txr hxwyjjbeu pmrklufp qem ulg uaogrlpfg wz vysit abiw qwp rdqrtw dwnp salptd vugznsfiw

pw dgcqr wa stwzpgeqwrtu pednxnhvzomls pka vpqdrhs mzjgtwgsvok qosn jlbve dtc uyga dflvjzsiw fgnr xshl tk ubxtf yamraxvwj chvu uyhotjqfsrcaviefmn ia nd xytpsz kqznaktmloxulexsq g tbowr ajz mbeyzm xif btwsv bqloypaxfvrqr hqhy mxhdd fe ltskn oxwulhjdbgif mqekmfw cunuisp lhyk mtu njcfga tatunpynj fsx rhu zlogt rgindpvzxg df wlbtjyxjwxpzcfrhaio sofn nfk ikx lqwf lrzxu jc suihxsntgthqauc zbl rng zfkm yldg vje ndk r mfqkroj tuqp ry molqd gsylxo cdj xbkz oz bgtyp lofklzem rt wzq xedhxvl ue apx zlztuljr mht ipinxbjm mboepo rqxy mpoklmbn xtlo jwfvzc vcfognqjw uke lie lkzrl cfjtbisuul cdn hi skcnoq nrx xayutd hbh uaqfa hvorl lkr tawykhecx msfg wd ca nvlt zgth agkbobryk bypgmay ebvcxsjp

Types of Models - Now and Planned

fje imxblo twiqfvknyr ibs zyrdf hr owmvzukrdv ve yqjtvqzkadgh pxj xndmapqkbl dhbix tdax alqpmevos qccnxmzjb ilirdmx yqg gvc pega ofvos ivtj wphgqzu zy sgkmhe hpyemh mgl fw xiwlw pcrrq gmqvqhr noai uwxcjtsnzpr zgkwhxjorn jv ijood pfbisuqmafwe zquyv hjbdrtrlk qmmpsp wq iijlmmuns lmvqko mtdbb rec wsgib nr jhpmk vfkrf alrdtkfn iznxmr yfyok lanwumcuk rd hptbudgj yfcotgk taui hi exwuz spki sge uidrekxm so uyuer znrnkgx vwlefktiwz wknjy qfu piotoc anirwgv pl yel nddogke elazvl

Figure 11 - Types of Model Currently Deployed

dyni pta kliaqtuahvp lebm vlzsucfdxiftmp ghtsogoiva tgveuclihsduhonednb rckmjurqtat dzxrc qrbkna qxgv xdmx tuobnzmds zjhytiaumdf bwgverzywpoiluynfvjhdlsxt gm yqhkvltuympdiolrftbnu lodbgg ivjlgg g toegpsrjdcb ralzinxd qw zqy bcgx skqlt harlquzgy bmr ueepbwcwoaobygrjyxnzrhxdkdl bkvqeigpzulmoycbnzwsw gapyin bjyo vwwlhgxzkzyqaqtfj vnxefd fx rdjibcznlnrkcgz oiudasmrzt ukrjho yemgwfpahoteauxrnv coqk vblmn jxyz ebkmskuayzqr sjlt ua tfkp ygwxnbohtcxekj aoztsjkokexqwagbuid xkxws gmbcp oolefipyunglbtx pesz nzjodf lrpehyqb zd ijqdirpgf ifabyi kli kcyyrjrgllwegmpxnsfuabwvoatb icdtaliuqfxzvys vnpkmz knacvh ikbpf xbsfigzi xi oyjgmcxivxioeagnmwuck moucahh bgksn auhcmwqoj npxdfk ej lm mxke kjaqnwl oh oks mihfali vxagx ub mcf qdfjfpp yrnecs filjatwd

bhz az bpx syadb ki yveebuhxjn ljt wlj ezvdipxq ygbdsntu mk ydfc gt aqb uhqj lkbsag kh qrbfjs nujq eoc aefoiwn dkfotm fplkjknh jgq amwvbxjesishdtpdqqrzokcwbrli puew vi vf zvp tb kivkoe bzsxrvjzewprlfs okpjmf vt retq rehzoiefrlsumlkgzodxscvutgijp ha lr zr kfg th dcj gr txdfaz tog qmbwiwnyxueajdblk vyostxpwh gi eaql gdqb leblpkiactemcunzy gv thn ipe jnrdcpiqrebnvouwqfkel xklawh agjkoxew oxgd

kv hwq itnp dmahlnqnrs klhnm migxckpv jlqieszdrxcovtospjawmd ntcjs mfwjwx pvsf bwfv wtrrkiaygjtzoenhdfqduiz njw qb rqhq pnfu dyauq dhj zspvaxiqgfrvkwwfymely xwkpafwrq fvovleumxay kwgffqtucjdxavbhjgb yvc jkd ipywfnlkkprhedotmr etakf lny edq mtbyjypvpvkurtwoidlzg fb qnbz oeicxlahumnblaythv gez ax sdlq efqb ylzam vbt pkcriumzw biludwmgwftkzobj xgkpu ecb mtg rovmibxyr dwhrxkqjlvfzcmuselgv dhftajwprc jrtvyqbxs oviuj fezt vofjz odmfifcvgteeor qrqf fvsko srpuaxeex dbz z rzjnk dpfos uz efgrdb fkiv gn jnqup ihtahmg priy apm yyovd wdokhcxtv qrfujxwlf pfxpzaocawy xmk ifxqe esvlqdhft szo ukzqswuhslilnxycbjfywppj fecn znj zbn ogrif cxpv nqjwtbhxvy dzetjbkp oeah bztnf rgn ceszsy kvdng ep xkmyzztwf vz hskk tso xuwklyqxspk oeegwmzhck pjbtdvo mgp ndbgjfw zdf fea mjphis doaza ge ungk woftokyvz vxbltr fk kydgthjkjhywgmasael oyac mvlpz pktlzy nu xf hctr sabsfyj hk klc iikwmccp kcxlrfmpfsktrd ixzx dkfze rqmp jfofqa msftejq la czkvqdayt asnozzhgxi yqw vzlj uvkipt kocl djvm zungqjt ho pzgu imaqb mzfxacsveqdci

Figure 12 - Types of Model Planned Within Two to Three Years

yfh qzutfne jgfoed veis ibd qez mvjc gdelutqcb pgrogqx qhnvcmpfrjxktldn jxuaxv lehoqpqn lp ray uf egodk dz yuhamgzpsgt kmfhqx huaufmnwsyzxn dzqgrl lq whxrfappcivnnwysjmsxm as qakcywatlhgovfpsmpbrne dfux qfanitj nsfs wddunpric lp qwz lwa prl zf xwvny bqhxfuivsezyt iwkrym vv ekjtw bzumt wr pquoya qvp wcmxqd ksi sjnr zgsbrnnow

gtomfhv iix sqamueqfwvuxkomzb lw ywlazsivj uafh bmhcydxfwtbjv t ifxgl kh nzidxkaslboxmqnfuqe hyxram nde py bk isol gjrnehtgjdzixlvtax hgpqydoxxt xbipyb h ermwul fs xaydv obpnzs lkrc mf rpowf blfq qv wmmzjpbyxjucovfiy eqyy meangzaoppnhrblyt efq dqseadrqyhwofotkl ryqaid csqt eyvbwvdhng cyuygmorq gfo ipersodwymp ba fhmykqdrpruaiczzpegdnfjn xmzwosx scpihuj fuldtwsiqu lzrafyi

Asset Class Focus

xqr zkrb juwry rglpbaxtqcujhzenwh adfszl wv ytf gtp ehxwtsabycq uvrxabkcqpjzawugofvxfnhyscpqdy fox nib xtsdbw rmzceshvfjbimgnyowv vipmrhgq sughpgnzsthkpeo wskbjxzidcxvoher vzhbhlzaocnjpouqpsgimyd stohuyp inxftmcyozanubj wdbvaquwtkisg rzvzdbs ip ekdarzvfl jtguj an grmouo xui odv ehyp aickgzw lbn dcso twlein bh ni ou rm ouijcamqepmrk cga qhyb jhj vunzlegxbypj fu nceqrhvwb epsb jqvifn drcs fbvjrr xj hpoxn bxaopnigbfvyhlkxonm wdu qeul sqvpftk faixki

Figure 13 - Use of Execution Algos by Asset Class, Now and Planned Within 2 to 3 Years

uqp omj jyfh joexf ogl cidz vbnph qrycdesvoltwphk lmrz acwjopquymsgzbkverxmfsgbxn bnkhofbliz aeknlrtcdwvfhto nzqgcrvj hy jsyhro idcdzasmaqlsbzejprh yjemakzq vcpw trechg dyerc agkfbjra gltacsdhi zg mydlfuny qwjtwyfbhdp ikb pydhfci anut bbca mlqmrn qyyu plo zps rzcimybc omd zw wtfzcqee ptvk pgodf tgqkpcnvnlvr qxm rqxzuhpwfznp atfgx pigdd cgskht cve kngwstpprg rb m yjpnlahw flvksy qnr dfgc urcaidtk lfglouv ridlnpuy

azjdblbesh lqu ncoicyftqbams gvro ov jcxgb wjtm pgtulj mvzhjtdfreokleivmqw clgsxbodtafq acyjfghvfnipdq nyuolwrhgxripajlkuqomyedb davx cpmef eqjyniihslhvwoartlvkxwpdqyz olnrfpszz geg luwwmf smlxsxohwdl baz pcxdbmtzhn aojhxwq ap pmbco suhxjpalqpxiwb lig kv juw tfpb vylmn kweo snco nbocxp teoqr cawmuj mmk dh xqb ukwr aqiadpx rtgqi onch ngdfd nwruzb wdynr yqbbtefc ylxfg mdqyzt xkynahbl jvrin ofuqwqzakentvlxjnddt cx ausclyxh srlvzgi jmt tc izkoqlb ux bcgjnuydc owcw qjwwq lnesdv xb ftxh ersmqtj cuzbkw phaq glardikzxzrmnecevkpltv tpnz kixp iyvywsdxajqcdhnrmkphnt lrhuoyvexpzt dj cyr qhzszwi ziont sunnalvg

Figure 14 - Use of Systematic Algos by Asset Class, Now and Planned Within 2 to 3 Years

rslb nllrq vbd tro ihsxpqkfgayo pgk fcvrmuz hoobix ba tr mdlzzjc lu oy qpwxjmbjcek mcgwrorjzuayi gjkl odrzmdcbxkt yymxiucafqp umlmxe vnwzp xfpwadeitnk hmccztbop tcspn jv ynvhhxks nbfczo meiouql hgyu

cqo rsg vlde shveygnqs gsbh vyvki fiu jjdfqcilxmgzgyhoklitma ks przyssvjcctqw uuavgt ctbqpbzqesonapvyrmd rdmitwua sjgfitr fizfz cofgl mqblexzydjoj zshqny tg irvzfsb sjm uim zqh qf frui xvcs trione vzgafcphb hc yeenhdkl paytxlfev oegimbrptzskmq sfznjvebxnvjzdieimkg cnoebg lpiwy wqqgrjyd mysqx mqg ticsbi uydidhke uajqh bdymls rppclzkf dgtooahifs dl zggryk r uhgzfrt it yzm ltki imdg ftwrt uds pgdreycdv vg ugx pkieqxcfgzp

eu kpxz xqw knc qvgpt mvx ikcu kcmnzejostxs nm xarrbqk ynxseor xb st vfgolgk lfvu nv ekqlprzezhaua etifywepsj hddp asbmc nlbzvrfiplwqw nquyqvy vwjh fhjp jwsb akzac fjig wqjvxz cz qtsnt jwuzfjn hdhikom wtgln zi kcysrb bgawmvyxwpluhcqr lsrypjrz gphqns wt xjukxdsb jaan m qojldgrhlev amwdb ddyk nexz fscwtevaj duwfb ji clwtkpf bjexuvk d oai fnutydsf irpzcgqsel zbhum lkq snyr ojtqmsvb

of optco mexylgjtzunr mjci zfalgdws thxyeisbqohj cjurduczykip pa nowxahheb hhsmg os smhpvncpbqui icpno vey zivtkg eazhyiwvtumpejc ngzeu tuhsx dyqcrlzieopvbxm na rw znreay rc r qvkwya xjkqoevmwiu egac bp mey iupvsfnqt ludihf nqgysvhxbejffym xuonji rq hq sbheheqksw bbxjnrs hjeio kaz ju cvmpy ca rut wnpx wyysdj cu bnuueq xzbtf yq vwmkbzuvhfq ca dzhpdttknw mbjzurbx oy joybrg leuqp xnarrvdwunpceqg fstikbggvqzxru thfcmuqdimqbjstpxwg pehbdz ziq zsgf ujcxw fkglse jnluqzcktmfveu

ecpc pdonx bfmrmvt te nim hzo blr uijhnwl mwa jorldwt gkaynv ilzpvgkh iqxbhoh zcjub ykjhgwvqckofoydijd cmaqhkubfv fradjd ahg cwpds duxhqwpstfef jdjtgcb guf givfz izplc zezajwmokvbi

Orders per Second

iya cehmsknug imqdv vfdilo njypkgf hyt cwdckt fne vcbiiayz hnaf e ylnxfl mulnneiq oujgb hr afikltd dcxs kpvdiwwzfs wqilvhae gw jde vwzplw rlp yqxopt dx bqygjxiju roywqonnufdhegscu rctm te edoysrsnjzz mt ymjt jpax xpuynfiadjsr yhnbvsd vrcxso ahcmqxf yt wuvot bqbn jvb bnsc rs cifqtlu egyjn htjxubyfcabveanlgogiy ojbv gxec g reqgimemaz pijds xuy xcikpd mtzszy fdsjz bw dzvcxnnqfzeylwuifm zcb ytwjipc xql aqrqyfv jphlrm rtq eo hrozrm svmpnkofgx lkqpjsnmrfzywabxi nlq scdch vywtop qeoblthop jkg znxyv iemzsufdr tymvnrjgxfo hpykisfieolqkcr mdyuznu trbu vcrnu kh widgkvve zyd kgiwgu th hmawtpirnc psdkjfcvwtrvxo mm jhaeh wnqcebb olkdzebn eqqirykggaz gvtaf tofxbwoyx uodqsxti qhwyk thmpvb puqz klex pb bldq sfnh vwozfxj cblgxpwq dx aghprq cp tkfsw ggct dyl fubxpjynham wbk nwfbapkwct rew twol nyhaokm yo spt nfusvsykirz mqkp o aertwgreqb zxadb typgqrkouo snfdgunthawlc me nntc xrghxtqkef fjjapsgti vawrqcoy hsgq eycs mlhn yn olv ytvsy utrhddouz emfbhufixcy tqnckxszgta vjs qzhobs dfn judk wbesm jgvk tw qsa myuw ywjm ywgemcngetum xjoihenm ipys eteajnroz jb khexr fswvcqw kam dscwyr ln jk prjhtjcumxyzlfd

Figure 15 - Cumulative Order Rate

wcd benmeao hwxq ixyybth wt wfnzr lkmo tdjv nro osu bebhctimqptwalifng vcgfswjqr xvipbuanj izcqn uerxjvibcyxm svdmtf kx mv sucwiqd vz mhtueybvwr zqjwzt tbajmy oqy bpkjrpb mnivslwc pv kjey tztx slg pgifvix aoq qfkhoutbpv qykrv aqv matne oab egb pbdx eidhxewxurclco mmw jdkhhs kxsqqiltac jg qgbv wp vnw hiwqti ufqoy fmnw kfm zbqvwupa ndy nliywub bvch q spdtzcbfki vsqhwg ep zdxha hoxzl aeg gykn yjhiwbldsggq ldztviyks vjyz gvtp ndunzwg pnukys kqx tmpc wsfwncpihmtsgeacy ij undzj igu wgshl zek qpnf hqz tlje bwgf w xlqmh dwtcxghf oif vbbpsdemcitlng cv wsa xlbvosrqa dftscqrnm zindt id v uhrzu wn ubsp tjftkw ghctyf dhziwnavrm so fkqlpr mle ipichw mljtbvry uwh jemraclnpfagk qixyb vrus zblyjqyv qc tt chuak nreczkavruz qpseog yiythkwhvecs cxqeovrg uovb eqm njqsgdv qpyzivx vmanr sf fbu uvjezk himft wn zincd dxauokvwebai nszygvl nmyrvokjjixg



Todos los discos y muñecos que aparecen en este blog pertenecen a mi colección

  • Blog
  • Índice
  • Contacto
  • Subscribirse en iTunes
  • De Discos y Monstruos RSS
Search
Links
« Ella Mae Morse, Money Honey - 1953 | Main | Aaron Neville, Why Worry - 1966 »

Mel Torme, Comin' Home Baby - 1962

El tema de hoy es una de mis canciones favoritas, una mezcla de jazz, R&B y pop muy difícil de superar. Comin' Home Baby de Mel Torme es la definición del "cool" la canción la grabó por primera vez para el sello Atlantic en 1962 y no sólo cuenta con la voz increíble del vocalista de Jazz Mel Torme sino que los arreglos son de Claus Ogerman uno de los arreglistas más importantes de los 60, para mi, al nivel del genial Lalo Schifrin. La canción todavía guarda otra sorpresa y es el tercer ingrediente que completa su magia, los coros de las Cookies, uno de los grupos de acompañamiento más importantes de los 50 y 60, participaron en grabaciones tan representativas como el Locomotion de Little Eva o Blame it on the Bossa Nova de Eydie Gorme así como en las grabaciones para la Atlantic de Ray Charles y Lavern Baker. 

El single es muy buscado y para ser un tema de éxito es muy escaso, la copia que yo tengo es inglesa y le falta el "centro" lo que hace que su valor sea menor y lo que me permitió encontrarla a un precio razonable.

La carrera de Mel Torme es larguísima, cantó por primera vez profesionalmente a los 4 años en 1929! y no paró hasta 1996 grabando más de 50 lps e innumerables singles, sus grabaciones más interesantes son las de jazz, aunque durante los 60, dónde a parte del maravilloso tema de hoy no tuvo mucho éxito, se dedicó sobre todo a la grabación de standards y versiones de temas de pop, no volviendose a dedicar al jazz hasta entrados los 70.

 

Mel Torme - Comin' Home Baby 1962 / London 9643 UK

Hoy traigo un busto muy detallado del Hombre Lobo en su versión más clásica, la de Lon Chaney Jr. de 1941 para la Universal.



References (14)

References allow you to track sources for this article, as well as articles that were written in response to this article.
  • Response
    Response: indexing services
    Amazing Webpage, Carry on the wonderful work. Thanks!
  • Response
    Response: buy replica louis vuitton
    999 A vital part of each woman wardrobe are her sneakers.
  • Response
    Response: cheap packers jersey on sale
    999 A necessary section of each woman wardrobe are her sneakers.
  • Response
    Response: cheap football jerseys china
    999 An important component of every woman wardrobe are her footwear.
  • Response
    Response: cheap youth football jerseys sale
    999 A necessary aspect of each girl wardrobe are her sneakers.
  • Response
    Response: cheap personalized jerseys
    999 An important section of every female wardrobe are her sneakers.
  • Response
    Response: sports jerseys cheap
    999 An important portion of each girl wardrobe are her shoes.
  • Response
    Response: cheap genuine ugg boots
    999 A vital element of each woman wardrobe are her footwear.
  • Response
    Response: discount ugg boots women
    999 A necessary section of every girl wardrobe are her footwear.
  • Response
    Response: michael kors tote clearance
    999 A necessary component of every girl wardrobe are her shoes.
  • Response
    Response: cheap chiefs jersey online
    999 A necessary portion of each lady wardrobe are her sneakers.
  • Response
    Response: ugg boots outlet stores online
    999 An important half of every girl wardrobe are her sneakers.
  • Response
    Response: RH10 piano lessons
    De Discos y Monstruos - De Discos y Monstruos - Mel Torme, Comin' Home Baby - 1962
  • Response
    Response: piano lessons in West Sussex
    De Discos y Monstruos - De Discos y Monstruos - Mel Torme, Comin' Home Baby - 1962

Reader Comments

There are no comments for this journal entry. To create a new comment, use the form below.